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Abstract

The growing complexity of deep neural network models in mod-
ern application domains necessitates a complex training process
that involves extensive data, sophisticated design, and substantial
computation. The trained model inherently encapsulates the in-
tellectual property owned by the model developer (or the model

owner). Consequently, safeguarding the model from unauthorized
use by entities who obtain access to the model (or the model con-

trollers), i.e., preserving the fundamental rights and proprietary
interests of the model owner, has become a critical necessity.

In this work, we propose CoreLocker, employing the strate-
gic extraction of a small subset of significant weights from the
neural network. This subset serves as the access key to unlock the
model’s complete capability. The extraction of the key can be cus-
tomized to varying levels of utility that the model owner intends
to release. Authorized users with the access key have full access
to the model, while unauthorized users can have access to only
part of its capability. We establish a formal foundation to under-
pin CoreLocker, which provides crucial lower and upper bounds
for the utility disparity between pre- and post-protected networks.
We evaluate CoreLocker using representative datasets such as
Fashion-MNIST, CIFAR-10, and CIFAR-100, as well as real-world
models including VggNet, ResNet, and DenseNet. Our experimental
results confirm its efficacy. We also demonstrate CoreLocker’s
resilience against advanced model restoration attacks based on
fine-tuning and pruning.

1 Introduction

Deep neural networks (DNNs) have seen remarkable success in
various fields, yet developing a high-quality model often demands
substantial resources. This includes sophisticated architectural de-
sign, extensive high-quality data, meticulous fine-tuning, and opti-
mization [57], and substantial computational power [52, 56]. Taking

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee.
IEEE Symposium on Security and Privacy, May 2024, San Francisco, CA, USA

© 2024 Copyright held by the owner/author(s).

GPT-3 [6] as an example, it consists of 175 billion parameters and
takes 355 GPU-years and $4.6M for a single training run [13]. A
model thus represents a valuable intellectual property (IP), and
transforms into a treasure of its developer. For instance, a recent
study by Fortune [58] shows that ChatGPT has attracted 100 million
active users two months after its launch, and earns $80 million per
month for OpenAI.

In contrast to the traditional deployment of DNN models within
the server or cloud under the direct control of the model owner,
various scenarios, such as commercial partnerships, consulting ser-
vices, and on-device inference, entail the transfer of the model to
an external party, referred to as the model controller. Neverthe-
less, once the model is handed over to the model controller, the
owner loses control over it. Indeed, a recent study [55] on 1,468
mobile apps uncovers that 41% of them fail to secure their DNN
models against on-device model inference attacks, allowing the
attacker to extract all model parameters through reverse engineer-
ing. Consequently, unethical controllers may exploit the obtained
model for unscrupulous competition or unauthorized subletting,
posing financial losses for the model owners. Moreover, malicious
controllers can abuse the model to facilitate the generation of adver-
sarial examples [19, 53, 68] to attack the model owner’s legitimate
services.

Two lines of research are seemingly potential to alleviate this
challenge, including passive methods and active methods. Passive
methods involve embedding a watermark [9, 14, 29, 60, 63, 64] or
signature [10, 32] into the model, which manifests only when cer-
tain inputs are given to the model, enabling the owner to claim
the ownership of the model. Such methods often fail to prevent
unauthorized usage after the model’s exposure, and the incentives
for theft remain. On the other hand, active methods introduce
keyed data and keyed neurons. The former integrates a secret key
into the training data during the preprocessing and trains a model
to operate only with key-preprocessed inputs [12, 45]. This strat-
egy entails retraining models for each key, rendering it extremely
time-consuming and unsuitable for pre-trained models. The lat-
ter embeds the key into neurons, which undermines the utility of
the entire model unless the key is known by the model controller
for neutralization [66, 71]. Nevertheless, these approaches entail
meticulous perturbation generation and specialized hyperparam-
eter selection when determining the key, and the key has been



IEEE Symposium on Security and Privacy, May 2024, San Francisco, CA, USA Z. Wang et al.

shown to be detectable and removable through out-of-distribution
value detection [11, 36], pruning [39] and fine-tuning [3].
Our work. In this work, we explore a novel defense paradigm
that takes a step forward from conventional parameter perturba-
tion approaches, focusing instead on the fundamental structural
bedrock that determines a neural network’s functionality. Our work
endows the model owner with the capability to tailor the model
into a low-utility version, which can be fully restored after autho-
rization. This capability holds broad applicability in online services
such as machine learning as a service (MLaaS) [48], and on-device
model deployment, where model owners strategically offer lower-
utility models to entice users toward purchasing full- or higher-
utility versions. Real-world examples include cutout.pro [1] and
together.ai [2], which provide models with free low utility options
or varying capabilities at different price points. Specifically, we
aim to answer the research question of how to degrade a model’s

performance to a lower utility level while ensuring that the full utility

can be efficiently restored by authorized controllers?

We propose CoreLocker, which locks a minimal subset of neu-
rons from the pre-protected neural network (denoted as 𝑓 ∗), param-
eterized by 0 < 𝛼 < 1, leading to a subnetwork of 𝑓 ∗ with partial
or none utility (which is thus denoted as 𝑓 𝛼 ). We formalize an
ideally-unusable network (denoted as 𝑓 0) which conducts random
inference, and in the extreme requirement where the capability
of the network needs to be fully hidden, the resulting 𝑓 𝛼 should
be proximate to 𝑓 0 in its performance, i.e., 𝑓 ∗ ≫ 𝑓 𝛼 ≈ 𝑓 0 if we
abuse 𝑓 − to denote the performance of themselves. CoreLocker
aims for a training data-agnostic and retraining-free process by di-
rectly operating on off-the-shelf pre-trained networks, making it
well-suited for seamless integration across diverse neural network
architectures.

CoreLocker’s solution stems from an intuitive yet compelling
insight: if the performance of a neural network is disproportionately
dependent on a specific small subset of critical weights, removing
these weights is likely to have the potential to incapacitate the net-
work. In particular, it employs an efficient selective weight removal,
based on the intrinsic attributes of a neural network, including
the ℓ1-norm of weights and the scaling factors of batch normaliza-
tion layers, as key criteria for its weight selection (property of
efficient extraction). These selected weights, referred to as the
access key, are few in number and are handled through the secure
channel to ensure the model’s original utility is readily recoverable
upon restoration (property of efficient authorized restoration).
However, the removal of the key makes it extremely complex to
restore the original network (property of complex unauthorized
restoration). As shown in a recent study [38], it requires millions
of years for an IBM Summit supercomputer to crack a multi-layer
neural network.

We provide a robust formal foundation for CoreLocker’s neuron-
level usage control, which establishes both lower and upper bounds
of the proximity and disparity among 𝑓 ∗, 𝑓 𝛼 , and 𝑓 0. Our formal-
ization captures two essential characteristics of neural networks,
including the distribution preservation during training [4, 28] and
the impact concentration of weights. This formalization enables
the use of probabilistic approaches to analyze the behavior of the

trained network, by highlighting that the weights of a trained net-
work preserve the probability distribution established during ini-
tialization [4, 28]. The impact concentration underscores that the
performance of a neural network is largely reliant on a crucial sub-

set of weights. This concept is seemingly the dual of the principle
behind various pruning studies [22, 34, 46, 59] that the majority of
neurons can be pruned with negligible impact. Despite the pruning
principle formally proved by a recent study [46], establishing a
formal proof for impact concentration is more challenging, as it has
to handle duplication and correlation among neurons. We for the
first time address it in this work through deriving the bounds of the
gaps among the outputs of 𝑓 ∗ and 𝑓 𝛼 layer by layer (see Section 4).

We conduct both qualitative and practical evaluations to inves-
tigate the performance of CoreLocker. The qualitative analysis
corroborates our theoretical framework, empirically revealing the
relationship between the depth and width of a target network and
the output disparity among 𝑓 ∗ and 𝑓 𝛼 . The practical study illus-
trates the effectiveness of CoreLocker on protecting real-world
models. In particular, we apply CoreLocker to three commonly-
used datasets, along with prevalent deep neural network archi-
tectures such as ResNet-164 [24]. With a global extraction ratio
set as low as 0.05, the performance of all models diminishes to
the level of random guessing (e.g., 1% for CIFAR-100) across all
datasets. Furthermore, we expose CoreLocker to attacks based on
fine-tuning [3] and pruning [39], showcasing its resilience against
advanced adversarial strategies.
Contributions. Our main contributions in this work are listed as
follows.

• A new research problem. We establish a crucial research
problem of AI model usage control, which requires a neuron-
level lock of the model’s utility while ensuring that its full
utility can be efficiently restored for authorized use with an
access key.

• A generic defense paradigm. CoreLocker is the first prac-
tical active schema for neuron-level usage control, distin-
guished by its lightweight, data-agnostic, and retraining-free
attributes. It efficiently identifies and extracts the access key
out of the target model.

• A formal framework and theoretical analysis.We estab-
lish a formal foundation for the theoretical analysis of model
usage control. It for the first time formalizes several key
characteristics of weights in a neural network, and provides
crucial bounds that guarantee the efficacy of CoreLocker,
an independent confirmation of provable guarantees of AI
model usage.

• An empirical evaluation.We implement CoreLocker and
evaluate it on representative datasets and real-world models.
Our results confirm its efficacy. For example, with a mere
0.05 extraction ratio, it efficiently and consistently degrades
the performance of all tested models to the level of random
guessing. We also demonstrate that CoreLocker remains
robust against advanced adversarial strategies, such as fine-
tuning attacks and pruning attacks.

Notations. The notations used throughout this paper are listed as
follows. Lower-case Latin letters, e.g., 𝑎, 𝑖 ,𝑢, and 𝑥 , denote variables
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and upper-case Latin letters denote constants like 𝐶 ,𝑀 , and 𝑁 , or
matrices like 𝑆 and𝑊 . The calligraphic font represents a set, e.g., I.
Greek letters are used as hyperparameters. Bold lower-case letters
refer to the vector, such as 𝒂, 𝒙 ,𝒚. 𝒙𝑖 is the 𝑖-th element of the vector
𝒙 . 0 or 1 represent a vector/matrix that has all its elements equal to
zero or one.We use𝑊𝑖 to represent the 𝑖-th row of the matrix𝑊 and
𝑊𝑖, 𝑗 the entry/element of the 𝑖-th row and 𝑗-th column.𝑊𝑇 is the
matrix transpose of𝑊 . The norm of a matrix refers to the operator
norm, i.e., ∥𝐴∥𝑛 = sup{𝐴𝒙 | ∥𝒙 ∥𝑛 ≤ 1, 𝒗 ∈ R𝑛, 𝐴 ∈ R𝑚×𝑛, 𝑛 > 0}.

2 Problem Formulation

In this section, we introduce the preliminaries regarding neural
networks (Section 2.1) to facilitate the understanding of our work.
We then define the threat model (Section 2.2) and the problem of
neuron-level usage control (Section 2.3).

2.1 Neural Networks

Aneural network can be conceptualized as a composite of linear and
nonlinear (activation) functions, with an architecture containing
multiple hidden layers. The activation function is denoted as 𝜙 (·) :
R→ R.

The standard fully-connected neural network 𝑓 ∗ (𝒙) : R𝑁 (0) →
R𝑁

(𝑀 )
with𝑀 layers can be structured as

𝑊 ∗,(𝑀 )𝜙
(
· · ·𝑊 ∗,(2)𝜙

(
𝑊 ∗,(1)𝒙 + 𝒃 (1)

)
+ 𝒃 (2) + · · ·

)
+ 𝒃 (𝑀 ) ,

where the input layer is denoted as the 0-th, and the𝑀-th represents
the output layer1. For each layer𝑚 ∈ [𝑀], the associated weight
matrix is expressed as𝑊 ∗,(𝑚) . The network receives an input 𝒙 ,
which generates a corresponding output 𝒚∗. It is posited that for
any given input 𝒙 , ∥𝒙 ∥2 ≤ 1. The term 𝒚∗,(𝑚) signifies the output
of the𝑚-th layer, with 𝒚∗,(0) = 𝒙 and 𝒚∗,(𝑀 ) = 𝒚∗. The notation
𝑁 (𝑚) represents the count of neurons in the𝑚-th layer, with 𝑁
being the maximum number among the neuron counts across all
layers, i.e., 𝑁 = max{𝑁 (1) , 𝑁 (2) , · · · , 𝑁 (𝑀 ) }.

The convolutional neural network is transformed into a special-
ized form of a fully connected network in this work. Specifically,
it involves processing an input tensor 𝑋 ∈ R𝑐×𝑝×𝑝 and producing
an output tensor 𝑌 ∈ R𝑐′×𝑝×𝑝 . The convolutional filters, denoted
as 𝐹 ∗𝑠,𝑡 ∈ R𝑞×𝑞 , are associated with the 𝑠-th (𝑠 ∈ [𝑐′]) output chan-
nel and the 𝑡-th (𝑡 ∈ [𝑐]) input channel, where 𝑐 and 𝑐′ are the
numbers of input and output channels, and 𝑝 denotes the shape of
the input and output tensor. We establish that these convolutional
filters can be converted into weight matrices𝑊 ∗. The details of this
transformation are further explored in Section 4.2.2.

2.2 Threat Model

In this section, we outline the scope of CoreLocker, and define
the attacks CoreLocker aims to defend against, in terms of the
information available to them and the operations they can conduct
on the obtained model.
Scope. The attacker CoreLocker takes into consideration aims to
obtain the complete neural network model. The possession of the
model by them opens avenues for various potential abuses, such

1A component-wise function applied to a vector operates on each element individually.

Access Key 
Extraction

𝑓!𝑓∗

Release To 
Public

Figure 1: An illustration of the CoreLocker workflow.

as monetization through unauthorized commercial services, or fa-
cilitating the generation of adversarial examples [19, 68] against
the model owner’s legitimate services. The focus of CoreLocker
is to establish a formally assured neuron-level access key genera-
tion, aiming to achieve the three fundamental properties outlined
in Section 1. With access keys, existing techniques like hardware-
assisted [8] and TEE-basedmanagement [54] can offer high-assurance
or revocable usage control.
Attacker capabilities. The attacker has access to weight parame-
ters of the model that is under the control of the model controller,
either via a public cloud platform or due to information breaches
caused by malicious malware infection or insider sources. We as-
sume the access is white-box, which is in favor of the attacker. Thus,
the attacker is also aware of the network architecture employed in
training the model. This assumption makes the threat model prag-
matic, as industrial applications typically adopt published DNN
architectures, which have demonstrated high modeling capabilities.
The attacker owns limited training data that is of identical distri-
bution as the model’s training data, as otherwise, they can train a
competitive model on their own.

The attackermay detect themanipulation of the protectionmech-
anism on the network and counteract their negative effects [11, 36].
We consider the attacker’s strategy of recovering the utility of the
protected model through fine-tuning [3] or model pruning [39],
which intend to adjust or remove the parameters that are manipu-
lated. Once the model functionality recovers, the attacker adapts it
for intended applications.

2.3 Neuron-level Usage Control

Given a target neural network 𝑓 ∗, the objective of CoreLocker is
to locate a sub-network 𝑓 𝛼 , where 𝛼 is the retention ratio, such that
𝑓 𝛼 becomes less functional without the extracted access key. In ex-
treme requirements where the network’s functionality needs to be
completely hidden, the resulted 𝑓 𝛼 should become non-functional
in the absence of the extracted access key. Figure 1 provides a brief
overview of this workflow.
Ideally unusable network 𝑓 0. CoreLocker is designed to meet
the extreme requirement that 𝑓 𝛼 loses all its utility. To represent
this as a reference model, we define an ideally unusable network,
denoted as 𝑓 0, by setting all weights of 𝑓 ∗ to zeros, such that 𝑓 ∗
transforms into a constant function, i.e., 𝑓 ∗ = 𝑓 0 = 𝒄 , where 𝒄
is a constant vector depending on the bias of the last layer of 𝑓 ∗.
When the test dataset is evenly distributed, meaning that each
class contains an equal number of samples, the constant nature
of 𝑓 0’s output implies that it will correctly identify only the class
that matches this constant output. Therefore, the accuracy of 𝑓 0 is
effectively 1/𝑁 (𝑀 ) , with 𝑁 (𝑀 ) being the total number of classes.
An illustration is displayed in Figure 2.
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Original Network f ∗
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Label Bf∗

Subnetwork fα

Label A

Label Bf∗

fα

Ideally Unusable Network f 0

Label A

Label Bf∗

fα

f0

ProximityDisparity

Figure 2: Illustration of the proximity and disparity among

𝑓 ∗, 𝑓 𝛼 , and 𝑓 0.

3 Our Approach: CoreLocker

The core of CoreLocker is to extract the access key from 𝑓 ∗. In
this section, we detail this process.

3.1 Access Key Extraction

CoreLocker extracts the access key by zeroing out a certain num-
ber of weights by the extraction ratio 1 − 𝛼 for each weight matrix
𝑊 (𝑚) for fully-connected networks 𝑓 ∗ and filters 𝐹 ∗𝑠,𝑡 for convolu-
tional networks. The retain ratio 𝛼 describes the ratio of retained
weights or filters. After this extraction process, the resulting net-
work becomes a subnetwork of 𝑓 ∗ by retain ratio 𝛼 , denoted by
𝑓 𝛼 . We denote the weight or the filter after extracting as𝑊 (𝑚) or
𝐹 (𝑚) , compared to the original ones𝑊 ∗,(𝑚) or 𝐹 ∗,(𝑚) . In this work,
there is no extraction in input and output layers, i.e.,𝑊 (1) =𝑊 ∗,(1)

and𝑊 (𝑀 ) = 𝑊 ∗,(𝑀 ) . Specifically, the CoreLocker’s access key
extraction process is defined as follows.

Definition 1 (Access Key Extraction). The access key extrac-

tion refers to zeroing out the weight on the weight matrices𝑊 ∗2
ac-

cording to the indicator set I, which contains the indicator (𝑖, 𝑗) of the
extracted weights𝑊 ∗

𝑖, 𝑗
. To determine I, each entry𝑊 ∗

𝑖, 𝑗
of𝑊 ∗

is listed

in ascending order based on the specific extraction indicator with the

total number of 𝐷 . By setting an extraction threshold 𝐷𝛼
(𝛼 ∈ [0, 1])

such that 1 ≤ 𝐷𝛼 ≤ 𝐷 , we let I := {(𝑖𝑘 , 𝑗𝑘 ) | 𝐷𝛼 ≤ 𝑘 ≤ 𝐷,𝑘 ∈ Z}
to set the indices of weights to be extracted, where 𝑘 means the entry

𝑊 ∗
𝑖, 𝑗

is the 𝑘-th one in the ordering.

Remark. This definition aptly applies to both weights and fil-
ters, given their conceptual similarity shown by Han et al. [21].
For a convolutional neural network, the ℓ1 norm of the filter,
specifically the sum of the absolute values of the filter weights,
serves as the extraction indicator.

Given the objective of rendering 𝑓 𝛼 dysfunctional, a natural
question might arise: how many weights need to be extracted to

achieve a utility that is close enough to that of 𝑓 0? To answer this
question, the underlying intuition is that even minor alterations
within a neural network can initiate a butterfly effect, where these
changes, though small, build up and magnify, significantly impact-
ing the network’s behavior. Adopting this perspective sets a clear

2The superscript for the layer index is omitted when referring to each layer
unambiguously.

Figure 3: Visualization of feature maps (the top and bottom

six) and corresponding filters (all 64 filters) from the first

convolutional layer of a VggNet, sorted by filters’ ℓ1-norm.

goal: to identify a sufficiently small extraction ratio 1 − 𝛼 such that

∥ 𝑓 𝛼 − 𝑓 0∥ ≤ 𝜖,

where 𝜖 represents a small constant and ∥·∥ denotes a measurement
to quantify the utility difference between pre- and post-protected
models, e.g., the accuracy of a neural network on a specified dataset.

3.2 Extraction Criteria

The efficacy of CoreLocker’s extraction procedure relies on the
precise selection of weight subsets, whose removal is expected to
notably affect the model’s performance. Given this context, it is a
logical first step to extract weights linked to larger layer outputs.
This is based on the insight that such weights in a neural network
are typically considered more impactful due to their ability to sig-
nificantly amplify inputs, thereby having a substantial influence on
the model’s predictions (discussed in Section 4.3). Therefore, we
adopt the following metrics to assess the significance of weights in
the extraction strategy.
ℓ1-norm. The absolute value of each weight can be regarded as an
indicator of the weight’s importance, and for filters, this is measured
by the sum of the absolute kernel weights, i.e., the ℓ1-norm [21, 35].
Specifically, for ℓ1-norm based weight extraction, the process of
extracting 𝑛 filters from the 𝑖-th convolutional layer is succinctly
described as follows.

(1) to compute the sum of absolute kernel weights for each filter
𝐹 ∗𝑠,𝑡 ,

(2) to arrange the filters in ascending order based on the sum
value,

(3) to remove the 𝑛 filters with the highest sum values, along
with their associated feature maps, and

(4) to remove the filters in the subsequent convolutional layer
that are linked to these removed feature maps.

Filters that are removed during this process are then cataloged in the
access key. Figure 3 intuitively shows that filters with a higher ℓ1-
norm value capture more detailed features. Filters with a lower sum
of weights tend to capture a narrower range of features, whereas
those with a higher weight sum exhibit a stronger capability in
feature capture. This distinction underscores the efficacy of the
proposed indicator.
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Scaling factors. To further reduce the computational complexity
of calculating the ℓ1-norm across all weight matrices, we propose
an alternative approach by extracting filters (or neurons in fully-
connected layers) associated with higher scaling factors, as such fil-
ters are often linked to larger layer outputs. This strategy is inspired
by the prevalent use of batch normalization (BN) layers following
convolutional layers, which incorporate channel-specific scaling
and shifting parameters [5, 37, 40]. Specifically, let 𝑦𝑖𝑛 and 𝑦𝑜𝑢𝑡 be
the input and output of a BN layer, and the BN layer executes a trans-
formation defined by the equation 𝑦𝑜𝑢𝑡 = 𝛾 (𝑦𝑖𝑛 − 𝜇)/

√
𝜎2 + 𝜖 + 𝛽 ,

where 𝜇 and 𝜎 are the mean and standard deviation values of inputs
over a mini-batch, 𝛾 and 𝛽 are trainable parameters (scale and shift)
which provide the possibility of linearly transforming normalized
values back to any scales [5, 40]. The 𝛾 parameters in BN layers can
serve as effective scaling factors. The underlying rationale of this
approach aligns with the ℓ1-normmethod in which it can be merged
with the adjacent linear transformation. By adopting this metric,
we can estimate the importance of filter weights without any di-
rect calculations, rendering it particularly suitable for increasingly
larger models.

4 Theoretical Analysis

In this section, we establish a formal foundation for the theoret-
ical analysis of neuron-level usage control. Section 4.1 lists two
assumptions about the Lipschitz property of activation functions
and distribution of weights, which are used in the following theo-
retical proofs. Section 4.2 discusses the properties of weights and
outputs of a neural network by taking weight matrices as random
matrices to estimate operator norms. Section 4.3 and Section 4.4
provide the theoretical guarantee for CoreLocker, forming the
performance dynamics (Figure 4a) and disparity bounds (Figure 4b)
as the extraction ratio increases.
Theoretical framework architecture. Theorem 1 in Section 4.3
reveals that selectively extracting a small subset of high-value
weights can result in 𝑓 𝛼 nearing 𝑓 0, by analyzing the performance
of 𝑓 𝛼 from the standpoint of output variances. Section 4.4 explores
the range of local variations in output between 𝑓 𝛼 and 𝑓 ∗, detailing
both the lower (Theorem 2) and upper bounds (Theorems 3 and 4)
of these variations.

4.1 Assumptions

This section illustrates two assumptions about activation functions
and weights of the neural network for the theoretical proofs.

Assumption 1 (Activation Function). The activation function

𝜙 satisfies the Lipschitz property that for any two values 𝑥1 and 𝑥2
in the domain of 𝜙 , |𝜙 (𝑥1) − 𝜙 (𝑥2) | ≥ 𝐿 |𝑥1 − 𝑥2 | holds true, where
𝐿 represents a positive constant known as the Lipschitz constant.

Additionally, 𝜙 is monotonic and 𝜙 (0) = 0.

Note that, for𝜙 (0) = 0, a linear transformation before the activation
can be applied, allowing any activation function to satisfy this
requisite. The properties defined in Assumption 1 are satisfied by
most of those widely-used activation functions, such as ReLU and
Tanh. In this work, we set a common Lipschitz constant 𝐿 for all
activation functions in a neural network.

Assumption 2 (Weight Distribution). The weights in the𝑚-th

layer are independently and identically distributed (i.i.d.), following a

sub-Gaussian distribution subG(𝜎2), where 𝜎 represents the standard

deviation, and each weight𝑤
(𝑚)
𝑖 𝑗

is bounded by |𝑤 (𝑚)
𝑖 𝑗

| ≤ 𝐶𝑤 , where
𝐶𝑤 is the maximum of these bounds across all layers.

The distribution of the weights is determined by the initializa-
tion, commonly a sub-Gaussian distribution, and affected by the
training process. For example, Kaiming initialization is based on
N(0, 2𝑛 ) [23], where 𝑛 is the neuron number of the layer. As has
been established in previous studies [4, 28], after the training pro-
cesses, the weights still follow a sub-Gaussian distribution, which
approaches the initialized distribution.

4.2 Properties of Neural Networks

This section discusses the properties of neural networks that our
formal proofs rely on. We take weight matrices as random matrices
because the numerous weights follow sub-Gaussian distributions
after initialization and training (Assumption 2). The overall insight
is to treat each layer as a composition of linear and non-linear
transformations and estimate the output range by its norm. The
linear transformation is equivalent to a matrix multiplication, and
non-linear transformation (activation function) is upper bounded
by the Lipschitz property.

The following properties focus on providing bounds for the
weight matrix ∥𝑊 ∗,(𝑚) ∥, the output ∥𝒚∗,(𝑚) ∥2, and the difference
between pre- and post-extraction weights ∥𝑊 (𝑚) −𝑊 ∗,(𝑚) ∥ for
the𝑚-th layer. Their proofs rely on the properties of random ma-
trices that are summarized as lemmas in Appendix A.1.
4.2.1 Properties of Fully-connected Networks. We start with explor-
ing the properties of fully-connected networks.

Property 1 (BoundingWeightMatrix). Given a fully-connected
network, its weight matrix𝑊 ∗,(𝑚)

satisfies, for any 𝜏 > 0,

∥𝑊 ∗,(𝑚) ∥2 ≤
√
𝑁 +𝐶𝑠𝐾2

𝑠 (
√
𝑁 + 𝜏),

with a probability of at least 1−2𝑒−𝜏2 , where𝐶𝑠 is a universal constant
and 𝐾𝑠 = max𝑖 ∥𝑊 ∗,(𝑚)

𝑖
∥2.

Proof. By Lemma 3 and Assumption 2,

P{𝑠1 (𝑊 ∗,(𝑚) ) ≤
√︁
𝑁 (𝑚) +𝐶𝑠𝐾2

𝑠 (
√︁
𝑁 (𝑚−1) + 𝜏)}

≥1 − 2𝑒−𝜏
2
.

Given 𝑁 = max{𝑁 (1) , 𝑁 (2) , · · · , 𝑁 (𝑀 ) },

𝑠1 (𝑊 ∗,(𝑀 ) ) ≤
√︁
𝑁 (𝑚) +𝐶𝑠𝐾2

𝑠 (
√︁
𝑁 (𝑚−1) + 𝜏)

≤
√
𝑁 +𝐶𝑠𝐾2

𝑠 (
√
𝑁 + 𝜏).

□

Property 2 (Bounding Output). Given a fully-connected net-

work, its output 𝒚∗,(𝑚)
satisfies, for any constant 𝜏 > 0,

∥𝒚∗,(𝑚) ∥2 ≤ (𝐿𝜆)𝑚 ∥𝒙 ∥2,

with a probability of at least (1−2𝑒−𝜏2 )𝑚 , where 𝜆 =
√
𝑁+𝐶𝑠𝐾2

𝑠 (
√
𝑁+

𝜏). 𝐶𝑠 is a universal constant and 𝐾𝑠 depends on weight matrices.
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Proof. We denote 𝑠1 (𝐴) as the maximum singular value of 𝐴
and set 𝜆 =

√
𝑁 +𝐶𝑠𝐾2

𝑠 (
√
𝑁 +𝜏) as the upper bound of the maximum

singular value of all weight matrices by Property 1. By Lipschiz
property of the activation function 𝜙 and ∥𝐴𝒙 ∥ = 𝑠1 (𝐴)∥𝒙 ∥,

∥𝒚∗,(𝑚) ∥2 =∥𝜙 (𝑊 ∗,(𝑚)𝒚∗,(𝑚−1)
𝑘

)∥2

=∥𝜙 (𝑊 ∗,(𝑚)𝒚∗,(𝑚−1)
𝑘

) − 𝜙 (0)∥2
≤𝐿∥𝑊 ∗,(𝑚)𝒚∗,(𝑚−1) − 0∥2
=𝐿∥𝑊 ∗,(𝑚)𝒚∗,(𝑚−1) ∥2
=𝐿𝑠1 (𝑊 ∗,(𝑚) )∥𝒚∗,(𝑚−1) ∥2
≤𝐿𝜆∥𝒚∗,(𝑚−1) ∥2
≤(𝐿𝜆)2∥𝒚∗ (𝑚−2) ∥2
· · ·

≤(𝐿𝜆)𝑚 ∥𝒙 ∥2 .

Then we calculate the probability that this inequality holds by
Property 1,

P{∥𝒚∗,(𝑚) ∥2 ≤ (𝐿𝜆)𝑚 ∥𝒙 ∥2}

=

𝑚∏
𝑘=1
P{∥𝑊 ∗,(𝑘 )𝒚∗,(𝑘−1) ∥2 ≤ 𝑠1 (𝑊 ∗,(𝑘 ) )∥𝒚∗,(𝑘−1) ∥2}

≥(1 − 2𝑒−𝜏
2
)𝑚 .

□

Property 3 (Bounding Difference of Weight Matrices).
Give a fully-connected network with its post-extraction network,

∥𝑊 (𝑚) −𝑊 ∗,(𝑚) ∥2 satisfies, for any constant 𝜇 > 0,

∥𝑊 (𝑚) −𝑊 ∗,(𝑚) ∥2 ≥ 𝜇,

with a probability of at most
6𝐶𝑒𝐶𝑤

√
𝐷𝑤

𝜇 , where 𝐷𝑤 is the maximum

number of extracted weights across all layers.𝐶𝑒 and𝐶𝑤 are universal

constants.

Proof. Omitting the layer index, the non-zero entries of𝑊 −𝑊 ∗

are {𝑊𝑖, 𝑗 −𝑊 ∗
𝑖, 𝑗

| (𝑖, 𝑗) ∈ I}. Then, according to Lemma 2, for any
𝑤 =𝑊𝑖, 𝑗 −𝑊 ∗

𝑖, 𝑗
we have

E|𝑤 |2 ≤E|𝑊 ∗
𝑖𝐷 , 𝑗𝐷

|2

=𝐶2
𝑤

(𝐷 + 1)𝐷
(𝐷 + 2) (𝐷 + 1)

≤𝐶2
𝑤

(2𝐷)2
𝐷2

=4𝐶2
𝑤 ,

E|𝑤 |4 ≤E|𝑊 ∗
𝑖𝐷 , 𝑗𝐷

|4

=𝐶4
𝑤

(𝐷 + 3) (𝐷 + 2) (𝐷 + 1)𝐷
(𝐷 + 4) (𝐷 + 3) (𝐷 + 2) (𝐷 + 1)

≤𝐶4
𝑤

(2𝐷)4
𝐷4

=16𝐶4
𝑤 ,

where 𝐷 represents the number of weights in𝑊 ∗
𝑖, 𝑗
, i.e., the indices

of the largest magnitude weights. The expected norm of𝑊 and𝑊 ∗

can be obtained by Lemma 3,

E∥𝑊 −𝑊 ∗∥2

≤𝐶𝑒 [(𝐷𝑤 · 4𝐶2
𝑤)

1
2 + (𝐷𝑤 · 4𝐶2

𝑤)
1
2 + (𝐷2

𝑤 · 16𝐶4
𝑤)

1
4 ]

=6𝐶𝑒𝐶𝑤
√︁
𝐷𝑤 .

By Markov’s inequality, for any 𝜇 > 0,

P{∥𝑊 −𝑊 ∗∥2 ≥ 𝜇} ≤ E∥𝑊 −𝑊 ∗∥2
𝜇

≤ 6𝐶𝑒𝐶𝑤
√
𝐷𝑤

𝜇
.

□

4.2.2 Properties for Convolutional Networks. This section first il-
lustrates the form conversion from a convolutional layer to a fully-
connected layer and then lists the properties of convolutional net-
works by considering the filter weight matrices.
Conversion fromconvolutional layer to fully-connected layer.
A convolutional layer can be converted to a fully-connected layer
based on the fact that they both apply linear transformations [42,
44, 46, 49]. Considering that the input for a convolutional layer
is a multi-channel image, we will use a three-dimensional tensor
representing channel, width, and height as the input in subsequent
sections.

For simplicity, we let the input tensor 𝑋 and the output ten-
sor 𝑌 of the𝑚-th convolutional layer differ in their channel dimen-
sion but share the same width and height dimensions. We then
define the matrix𝑊 ∗,(𝑚) transformed from the convolutional𝑚-
th layer with filters 𝐹 ∗,(𝑚)

𝑠,𝑡 ∈ R𝑞×𝑞 , which is for the 𝑠-th output
channel and the 𝑡-th input channel. Following [46, 49], this ma-
trix is formalized as𝑊 ∗,(𝑚) ∈ R𝑝2𝑐′×𝑝2𝑐 to facilitate the equation
vec(𝑌 ) =𝑊 ∗,(𝑚)vec(𝑋 ), with vec(·) representing the vectorization
function. Specifically,

𝑊 ∗ =


𝐵1,1 · · · 𝐵1,𝑐
.
.
.

. . .
.
.
.

𝐵𝑐′,1 · · · 𝐵𝑐′,𝑐

 ,
where 𝐵𝑠,𝑡 is a double block circulant matrix as follows

circ(𝐾𝑠,𝑡,1,:) circ(𝐾𝑠,𝑡,2,:) · · · circ(𝐾𝑠,𝑡,𝑝,:)
circ(𝐾𝑠,𝑡,𝑝,:) circ(𝐾𝑠,𝑡,1,:) · · · circ(𝐾𝑠,𝑡,𝑝−1,:)

.

.

.
.
.
.

. . .
.
.
.

circ(𝐾𝑠,𝑡,2,:) circ(𝐾𝑠,𝑡,3,:) · · · circ(𝐾𝑠,𝑡,1,:)


,

𝐾𝑠,𝑡 =

[
𝐹 ∗𝑠,𝑡 0𝑞×(𝑝−𝑞)

0(𝑝−𝑞)×𝑞 0(𝑝−𝑞)×(𝑝−𝑞)

]
,

and circ(·) is the circular matrix of a vector (Definition 2).
We describe the properties of convolutional networks below,

which pertain to the size and number of filters. Owing to a proof
scheme similar to that for fully-connected networks, we have de-
ferred the corresponding proofs to Appendix A.2.

Property 4 (BoundingWeightMatrix). Given a convolutional
neural network, its weight matrix𝑊 ∗,(𝑚)

satisfies, for any constant

𝜏 > 0,

∥𝑊 ∗,(𝑚) ∥2 ≤ 𝐶2𝜆,



CoreLocker: Neuron-level Usage Control IEEE Symposium on Security and Privacy, May 2024, San Francisco, CA, USA

O

Pr
ox

im
ity

1

f∗

f0
fα

(a) Bounded Output Variance

O
D

is
pa

ri
ty

1

G + η

G

f∗

f0

fα

(b) Bounded Output Disparity

Figure 4: The output variance in a neural network is bounded

by the variance of its weights and biases. The range of the net-

work’s output disparity post-extraction ∥𝒚 −𝒚∗∥2 is bounded
by 𝐺 and 𝐺 + 𝜂, where 𝜂 = 𝜇𝐿𝑚𝜆𝑚−1∥𝒙 ∥2 .

with a probability of at least (1 − 2𝑒−𝜏
2 )𝐶2

, where 𝜆 = (
√
𝑄 +

𝐶𝑠𝐾
2
𝑠 (
√
𝑄 + 𝜏)) and 𝐶 is the maximum number of channels in each

convolutional layer. 𝑄 is the maximum size of all filters. 𝐶𝑠 is a uni-

versal constant and 𝐾𝑠 depends on kernel weight matrices of filters.

Property 5 (Bounding Output). Given a convolutional neural

network, the output 𝒚∗,(𝑚)
satisfies, for any constant 𝜏 > 0

∥𝒚∗,(𝑚) ∥2 ≤ (𝐿𝐶2𝜆)𝑚 ∥𝒙 ∥2,

with a probability of at least (1 − 2𝑒−𝜏
2 )𝐶2𝑚

, where 𝜆 =
√
𝑄 +

𝐶𝑠𝐾
2
𝑠 (
√
𝑄 + 𝜏) and 𝑄 is the maximum size 𝑞 × 𝑞 of all filters. 𝐶 and

𝐶𝑠 are universal constants and 𝐾𝑠 depends on kernel weight matrices

of filters.

Property 6 (Bounding Difference of Weight Matrices).
Give a convolutional networkwith its post-extraction network, ∥𝑊 (𝑚)−
𝑊 ∗,(𝑚) ∥2 satisfies, for any constant 𝜇 > 0,

∥𝑊 (𝑚) −𝑊 ∗,(𝑚) ∥2 ≥ 𝜇,

with a probability of at most
6𝑄2𝐶𝑒𝐶𝑤

√
𝐷𝑤

𝜇 where𝐷𝑤 is themaximum

number of extracted filters in each layer and 𝑄 is the maximum size

of all filters. 𝐶𝑒 and 𝐶𝑤 are universal constants.

4.3 Performance Dynamics

We start with exploring the performance dynamics of 𝑓 𝛼 as the
retention ratio decreases, specifically focusing on the variance V of
the network outputs. The following theorem hints that the extrac-
tion of weights with larger absolute values causes 𝑓 𝛼 to approach
𝑓 0 with only a minimal extraction ratio 1 − 𝛼 .

Theorem 1 (Bounding Output Variance). Given a fully con-

nected neural network with an input 𝒙 ,

V(𝒚∗,(𝑀 ) ) ≤ ∥𝒙 ∥22 (𝐿
2𝑁 )𝑚

𝑀∏
𝑚=1

(𝜎 (𝑚)
𝑤 )2 + 𝐿2𝑁 (𝜎 (𝑀 )

𝑏
)2

+ 𝐿2
𝑀−1∑︁
𝑚=1

{𝑁 (𝜎 (𝑚)
𝑏

)2
𝑀∏

𝑙=𝑚+1
[𝐿2𝑁 (𝜎 (𝑙 )𝑤 )2]},

where 𝜎
(𝑚)
𝑤 and 𝜎

(𝑚)
𝑏

are the standard deviations of weights and

biases in the𝑚-th layer.

Proof. For the 1-st hidden layer, we have𝑊 ∗,(1)
𝑖

𝒙+𝑏 (1)
𝑖

of linear
transformation for one neuron. Given that all weights and biases
are i.i.d,

V(𝑊 ∗,(1)
𝑖

𝒙 + 𝑏 (1)
𝑖

) =V(
𝑁 (1)∑︁
𝑗=1

𝑊
∗,(1)
𝑖, 𝑗

𝑥 𝑗 + 𝑏 (1)𝑖
)

=V(
𝑁 (1)∑︁
𝑗=1

𝑊
∗,(1)
𝑖, 𝑗

𝑥 𝑗 ) + V(𝑏 (1)𝑖
)

=

𝑁 (1)∑︁
𝑗=1

𝑥2𝑗V(𝑊
∗,(1)
𝑖, 𝑗

) + V(𝑏 (1)
𝑖

)

=(𝜎 (1)𝑤 )2
𝑁 (1)∑︁
𝑗=1

𝑥2𝑗 + (𝜎 (1)
𝑏

)2

=(𝜎 (1)𝑤 )2∥𝒙 ∥22 + (𝜎 (1)
𝑏

)2 .

By the Lipschitz property of the activation function, we have

𝑦
∗,(1)
𝑖

= 𝜙 (𝑊 ∗,(1)
𝑖

𝒙 + 𝑏 (1)
𝑖

) ≤ 𝐿(𝑊 ∗,(1)
𝑖

𝒙 + 𝑏 (1)
𝑖

),

and then,

V(𝑦∗,(1)
𝑖

) ≤V[𝐿(𝑊 ∗,(1)
𝑖

𝒙 + 𝑏 (1)
𝑖

)]

≤𝐿2V(𝑊 ∗,(1)
𝑖

𝒙 + 𝑏 (1)
𝑖

)

≤𝐿2 [(𝜎 (1)𝑤 )2∥𝒙 ∥22 + (𝜎 (1)
𝑏

)2] .

Hence, we have

V(𝒚∗,(1) ) =
𝑁 (1)∑︁
𝑗=1
V(𝑦∗,(1)

𝑖
)

≤𝐿2𝑁 (1) [(𝜎 (1)𝑤 )2∥𝒙 ∥22 + (𝜎 (1)
𝑏

)2] .

Similar for other layers,

V(𝒚∗,(𝑚) ) ≤ 𝐿2𝑁 (𝑚−1) [(𝜎 (𝑚)
𝑤 )2∥𝒚 (𝑚−1) ∥2 + (𝜎 (𝑚)

𝑏
)2],

and it concludes the theorem by iterative applying the inequalities.
□

Remark: Theorem 1 establishes that the upper bound of the out-

put variance in a neural network is determined by the variances

of its weights and biases. It suggests a direct relationship where

zeroing out larger-magnitude weights contributes to a significant

reduction in the dynamic range of the output (smaller output

variance), since altering larger-magnitude weights directly affects

the variance of the weights and, consequently, the variance of out-

puts from each layer. Additionally, the function 𝑓 𝛼 approaches

𝑓 0 following the extraction of larger-magnitude weights. This

occurs because, after the extraction of those weights, the variance

of the outputs primarily depends on the variance of the biases,

and the outputs tend to converge towards the biases of the last

layer, as described by 𝒚 =𝑊 (𝑀 )𝒚 (𝑀−1) + 𝒃 (𝑀 )
.
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4.4 Theoretical Disparity Bounds

The range of the network’s output disparity ∥𝒚 −𝒚∗∥2 is estimated
in this section. Importantly, we establish a lower bound, denoted
as 𝐺 , for ∥𝒚 −𝒚∗∥2 to guarantee the effectiveness of our proposed
methodology. This lower bound𝐺 is tailored to the specific network
and its inputs. Additionally, we demonstrate that the upper bound
for ∥𝒚 −𝒚∗∥2 is high with a high probability, indicating that the
disparity is significant.
Disparity quantity 𝐺 . For the𝑚-th layer, the disparity quantity
𝐺 is defined as

𝐺 (𝑚) = ∥𝒚 (𝑚) − 𝜙 (𝑊 (𝑚)𝒚∗,(𝑚−1) )∥2,
where it serves as a lower bound of ∥𝒚 (𝑚) −𝒚∗,(𝑚) ∥2. Specifically,
𝐺 (𝑚) represents the norm of the discrepancy between the 𝑚-th
layer’s output after extraction, and the output obtained by feeding
the (𝑚−1)-th layer output of the original network into the extracted
layer. Both lower and upper bounds of output discrepancies for each
layer𝑚 will be established based on this measure 𝐺 (𝑚) .

We utilize inductive proof to prove the case of ∥𝒚 (𝑚) −𝒚∗,(𝑚) ∥2,
extending up to the final output layer. This inductive process allows
us to systematically assess how alterations in each layer, due to
weight extraction, propagate through the network and ultimately
manifest in the output layer. In our proof, we omit the bias terms
in this section as it can be regarded as a variable within the homo-
geneous function perspective.

4.4.1 Lower Bound of Disparity. We first establish a lower bound of
∥𝒚 (𝑚) −𝒚∗,(𝑚) ∥2, which signifies a largely inevitable error margin
between 𝒚 (𝑚) and 𝒚∗,(𝑚) across each layer. Although extracting
those weights that are opposite numbers may lead to 𝒚 (𝑚) and
𝒚∗,(𝑚) being identical, such an occurrence is rare in practical appli-
cations. To further enhance the established disparity lower bound,
we also provide the estimated lower bound of 𝐺 (𝑚) with high
probability.

Theorem 2 (Generic Lower Bound). When extracting weights

with the highest absolute values, we have

∥𝒚 (𝑚) −𝒚∗,(𝑚) ∥2 ≥ 𝐺 (𝑚) , (1)

where 𝐺 (𝑚) ≥ 𝜇 for any constant 𝜇 > 0, with a probability at

most [𝑁𝑚−1 (𝐷𝑤𝐶𝑤)𝑚]/𝜇. 𝐷𝑤 is the maximum number of weights

extracted from each layer and 𝐶𝑤 is a universal constant.

Proof. We first prove ∥𝒚 (𝑚) −𝒚∗,(𝑚) ∥2 ≥ 𝐺 (𝑚) , and then pro-
vide a lower bound of 𝐺 (𝑚) .

Considering the monotonicity of 𝜙 , we only need to prove each
entry of the inputs of the𝜙 satisfies |𝑊 (𝑚)

𝑖
𝒚 (𝑚−1)−𝑊 ∗,(𝑚)

𝑖
𝒚∗,(𝑚−1) |

≥ |𝑊 (𝑚)
𝑖

𝒚 (𝑚−1) −𝑊 (𝑚)
𝑖

𝒚∗,(𝑚−1) | for the 𝑖-th neuron3. By extract-
ing from the highest positive weights of the𝑚-th layer, we have
𝒚 (𝑚−1) ≤ 𝒚∗,(𝑚−1) and𝑊 (𝑚)

𝑖
𝒚 (𝑚−1) ≤ 𝑊

(𝑚)
𝑖

𝒚∗,(𝑚−1) 4. Then,
𝑊

(𝑚)
𝑖

𝒚 (𝑚−1) ≤ 𝑊
(𝑚)
𝑖

𝒚∗,(𝑚−1) ≤ 𝑊
∗,(𝑚)
𝑖

𝒚∗,(𝑚−1) and it natu-
rally leads to ∥𝒚 (𝑚) − 𝒚∗,(𝑚) ∥2 ≥ 𝐺 (𝑚) . Conversely, with extrac-
tion from the lowest negative weights, 𝒚 (𝑚−1) ≥ 𝒚∗,(𝑚−1) and
3The inequality of two vectors means each pair of their elements satisfies this
inequality.
4This holds when 𝒚 (𝑚−1) ≥ 𝒚∗,(𝑚−1) ≥ 0, satisfied by modifying the biases for a
positive output in an equivalent activation function.

𝑊
(𝑚)
𝑖

𝒚 (𝑚−1) ≥𝑊 (𝑚)
𝑖

𝒚∗,(𝑚−1) ≥𝑊 ∗,(𝑚)
𝑖

𝒚∗,(𝑚−1) , upholding the
above inequality.

Next, we explore the lower bound of𝐺 (𝑚) . Again, by considering
the extraction from the highest positive weights, we establish that
for 𝑖 ∈ [𝑁 (𝑘 ) ], E|𝜙 (𝑊 (1)𝒙) −𝒚 (1) | ≤ 𝐷𝑤𝐶𝑤 and then

E|𝜙 (𝑊 (2)𝒚∗,(1) ) −𝒚 (2) | ≤𝐷𝑤𝐶𝑤 · E|𝜙 (𝑊 (1)𝒙) −𝒚 (1) |
≤𝑁 (𝐷𝑤𝐶𝑤)2 .

Similarly, for the𝑚-th layer,

E|𝜙 (𝑊 (𝑚)𝒚∗,(𝑚−1) ) −𝒚 (𝑚) | ≤ 𝑁𝑚−1 (𝐷𝑤𝐶𝑤)𝑚,

where 𝐶𝑤 is an upper bound of the extracted weight or the sum
of weights of each extracted filter. By Markov inequality, we have
𝐺 (𝑚) ≥ 𝜇 for any constant 𝜇 > 0, with a probability at most
[𝑁𝑚−1 (𝐷𝑤𝐶𝑤)𝑚]/𝜇. The case of extracting from the lowest nega-
tive weights is similar. □

Theorem 2 applies to both fully-connected and convolutional neural

networks. In convolutional networks, our extraction targets the filter

as a whole. Extracting a filter with either the maximum or minimum

sum of weights effectively mirrors the process of extracting multiple

positive or negative weights in𝑊 ∗
, as the sum of these weights is

either predominantly positive or negative.

4.4.2 Upper Bound of Disparity. We start our analysis on fully-
connected networks. Theorem 3 below establishes the upper bound
of ∥𝒚 (𝑚+1) −𝒚∗,(𝑚+1) ∥2.

Theorem 3 (Upper Bound for Fully-connected Network).
When extracting weights with the highest absolute values, for any

constants 𝜏 > 0 and 𝜇 > 0,

∥𝒚 (𝑚) −𝒚∗,(𝑚) ∥2 ≤ 𝐺 (𝑚) + 𝜇𝐿𝑚𝜆𝑚−1∥𝒙 ∥2, (2)

with a probability of at least (1− 6𝐶𝑒𝐶𝑤

√
𝐷𝑤

𝜇 ) (1− 2𝑒−𝜏
2 )𝑚−1

, where

𝜆 =
√
𝑁 +𝐶𝑠𝐾2 (

√
𝑁 + 𝜏). 𝐷𝑤 is the maximum number of extracted

weights in each layer and 𝐶𝑒 and 𝐶𝑤 are universal constants.

Proof. First,

∥𝒚 (𝑚) −𝒚∗,(𝑚) ∥2
=∥𝒚 (𝑚) − 𝜙 (𝑊 (𝑚)𝒚∗,(𝑚−1) )

+ 𝜙 (𝑊 (𝑚)𝒚∗,(𝑚−1) ) −𝒚∗,(𝑚) ∥2
≤∥𝒚 (𝑚) − 𝜙 (𝑊 (𝑚)𝒚∗,(𝑚−1) )∥2
+ ∥𝜙 (𝑊 (𝑚)𝒚∗,(𝑚−1) ) −𝒚∗,(𝑚) ∥2

=𝐺 (𝑚) + ∥𝜙 (𝑊 (𝑚)𝒚∗,(𝑚−1) ) −𝒚∗,(𝑚) ∥2 .

Considering the activation function 𝜙 ’s Lipschitz property,
∥𝜙 (𝑊 (𝑚)𝒚∗,(𝑚−1) ) −𝒚∗,(𝑚) ∥2

=∥𝜙 (𝑊 (𝑚)𝒚∗,(𝑚−1) ) − 𝜙 (𝑊 ∗,(𝑚)𝒚∗,(𝑚−1) )∥2
≤𝐿∥𝑊 (𝑚)𝒚∗,(𝑚−1) −𝑊 ∗,(𝑚)𝒚∗,(𝑚−1) ∥2
=𝐿∥(𝑊 (𝑚) −𝑊 ∗,(𝑚) )𝒚∗,(𝑚−1) ∥2
≤𝐿∥𝑊 (𝑚) −𝑊 ∗,(𝑚) ∥2∥𝒚∗,(𝑚−1) ∥2 .

By the upper bounds derived in Property 2 and 3,



CoreLocker: Neuron-level Usage Control IEEE Symposium on Security and Privacy, May 2024, San Francisco, CA, USA

𝐿∥𝑊 (𝑚) −𝑊 ∗,(𝑚) ∥2∥𝒚∗,(𝑚−1) ∥2
≤𝐿𝜇 (𝐿𝜆)𝑚−1∥𝒙 ∥2
=𝜇𝐿𝑚𝜆𝑚−1∥𝒙 ∥2,

where 𝜆 =
√
𝑁 +𝐶𝑠𝐾2 (

√
𝑁 + 𝜏).

Last, for calculating the probability that this inequality holds
with Property 2 and 3,

P{∥𝒚 (𝑚) −𝒚∗,(𝑚) ∥2 ≤ 𝐺 (𝑚) + 𝜂 (𝑚) }

=P{∥𝑊 (𝑚) −𝑊 ∗,(𝑚) ∥ ≤ 𝜇}

· P{∥𝒚∗,(𝑚−1) ∥ ≤ (𝐿𝜆)𝑚−1∥𝒙 ∥2}

≥(1 − 6𝐶𝑒𝐶𝑤
√
𝐷𝑤

𝜇
) (1 − 2𝑒−𝜏

2
)𝑚−1 .

□

Convolutional neural networks. For convolutional neural net-
works (CNNs), a different upper bound is established by factor-
ing in the convolutional filters. This distinction arises since the
CoreLocker extracts entire filters in CNNs rather than individual
weights. Note that in such case, the weight matrix𝑊 ∗ is composed
of double block circulant matrices 𝐵𝑠,𝑡 , as detailed in Section 4.2.2.

Theorem 4 (Upper Bound for Convolutional Network).
When extracting weights with the highest absolute values, for any

constants 𝜏 > 0 and 𝜇 > 0,

∥𝒚 (𝑚) −𝒚∗,(𝑚) ∥2 ≤ 𝐺 (𝑚) + 𝜇𝐿𝑚𝜆𝑚−1∥𝒙 ∥2, (3)

with a probability of at least (1− 6𝑄2𝐶𝑒𝐶𝑤

√
𝐷𝑤

𝜇 ) (1− 2𝑒−𝜏
2 )𝐶2 (𝑚−1)

,

where 𝜆 = 𝐶2 [
√
𝑄 +𝐶𝑠𝐾2

𝑠 (
√
𝑄 + 𝜏)]. 𝐷𝑤 is the maximum number

of extracted filters in each layer, 𝐶 is the maximum number of filters,

and 𝐶𝑒 and 𝐶𝑤 are universal constants.

Proof. Similar to Theorem 3,

∥𝒚 (𝑚) −𝒚∗,(𝑚) ∥2
≤𝐺 (𝑚) + 𝐿∥𝑊 (𝑚) −𝑊 ∗,(𝑚) ∥2∥𝒚∗,(𝑚−1) ∥2 .

By Properties 5 and 6,

𝐿∥𝑊 (𝑚) −𝑊 ∗,(𝑚) ∥2∥𝒚∗,(𝑚−1) ∥2
≤𝐿𝜇 (𝐿𝜆)𝑚−1∥𝒙 ∥2
=𝜇𝐿𝑚𝜆𝑚−1∥𝒙 ∥2,

where 𝜆 = 𝐶2 [
√
𝑄 +𝐶𝑠𝐾2

𝑠 (
√
𝑄 + 𝜏)].

Last, for calculating the probability that this inequality holds
with Properties 5 and 6,

P{∥𝒚 (𝑚) −𝒚∗,(𝑚) ∥2 ≤ 𝐺 (𝑚) + 𝜂 (𝑚) }

=P{∥𝑊 (𝑚) −𝑊 ∗,(𝑚) ∥ ≥ 𝜇}

· P{∥𝒚∗,(𝑚−1) ∥ ≤ (𝐿𝜆)𝑚−1∥𝒙 ∥2}

≥(1 − 6𝑄2𝐶𝑒𝐶𝑤
√
𝐷𝑤

𝜇
) (1 − 2𝑒−𝜏

2
)𝐶

2 (𝑚−1) .

□

We contend that there is mutual reinforcement among the es-
tablished theorems. Specifically, the established upper bounds do
not scale indefinitely, in alignment with Theorem 1 where 𝑓 𝛼 tends
towards 𝑓 0 as the extraction ratio increases. This is linked to the
fact that

√
𝐷𝑤 , which is solely related to the extraction process,

increases as 𝛼 decreases. However, this increase progresses at a pro-
gressively slower pace, consistent with the decrease in the output’s
variance.

Remark: Theorems 2 to 4 establish both lower and upper bounds

of the disparity among 𝑓 ∗, 𝑓 𝛼 , and 𝑓 0. The formal analysis

demonstrates that as the extraction ratio increases, the disparity

also increases with a high probability. This finding is further

corroborated by empirical results, as elaborated soon in Section 5.

Overall, Section 4 establishes a strong formal foundation for

CoreLocker’s neuron-level usage control, ensuring that Core-

Locker’s strategy offers strong guarantees.

5 Experimental Evaluation

This section validates CoreLocker with qualitative analysis (Sec-
tion 5.1) and practicality evaluation (Section 5.2). The qualitative
analysis aims to substantiate the alignment between theoretical
analysis and practicality evaluation in order to examine the effects
of various factors on a neural network, such as network depth (num-
ber of hidden layers) and width (number of neurons in each hidden
layer). The practicality evaluation presents the results of apply-
ing CoreLocker on commonly used large networks, e.g., ResNet-
164 [24].

5.1 Qualitative Analysis

In this section, we conduct a qualitative analysis of the CoreLocker
mechanism, aiming to complement our theoretical analysis in Sec-
tion 4.4 with real-world demonstrations. Specifically, we compare
model performance after weight extraction with multiple models
of different widths and depths.

5.1.1 Experimental Setup. We conduct the analysis on fully-connected
neural networks (FCNs). Specifically, a total of 80 FCNs are con-
structed with different structures, i.e., the number of hidden layers
is set from 4 to 13 (with a step of 1 layer), and the number of neu-
rons in each layer is set from 1,000 to 8,000 (with a step of 1,000
neurons). The FCNs are trained on the MNIST dataset [16] using
Adam optimizer [30] with a learning rate of 0.001, and a batch size
of 128. Each network has 784 input neurons and 10 output neurons.
After 50 epochs of training, these FCNs achieve 98.6% test accuracy
on average. The weights are then extracted based on the ℓ1-norm
indicator with a fixed global extraction ratio of 0.002%.

5.1.2 Results. Figure 5 illustrates the analysis results of the ac-
curacy dropping across networks with varying depth and width
settings. Networks with larger width and depth aremore susceptible
to utility loss upon extraction. For example, after weight extraction,
the performance of most networks with more than 6 hidden layers
and more than 3,000 neurons in each layer decreases by more than
50%, and networks with more than 9 hidden layers and more than
5,000 neurons in each layer demonstrate very low accuracy, where
most of them drop to a mere 10%.
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Figure 5: Accuracy dropping across networks with varying

depth and width settings. Networks with greater width and

depth are more susceptible to utility loss upon extraction.

The analysis results further demonstrate that the model perfor-
mance after weight extraction approaches 1/𝑁 (𝑀 ) (e.g., 10% when
𝑁=4,000, 𝑀=12), which is consistent with Theorem 1. This indi-
cates that the performance of 𝑓 𝛼 approaches 𝑓 0 even when small
amounts of weights are extracted.

It is also notable that the depth of the model has a more pro-
nounced impact on the decrease in accuracy compared to its width,
highlighted by the fact that introducing an additional layer yields a
similar effect to the expansion of width by 1,000 units. Such analysis
result is consistent with our analysis in Theorem 2 and Theorem 3,
where the depth has an exponential effect on the disparity bounds.
Additionally, such results empirically validate the insights of our
theorems. This empirical validation offers a novel viewpoint for an-
alyzing the behavior of trained networks and lays the groundwork
for CoreLocker’s neuron-level usage control.

5.2 Practicality Evaluation

To establish that CoreLocker is practical to protect real-world mod-
els, we apply it to prevalent DNN architectures. We first demon-
strate that CoreLocker is capable of degrading the model per-
formance with a low extraction ratio, then analyze its potential
capability to enable fine-grained customization of access keys.

5.2.1 Experimental Setup. We consider several prevalent DNN ar-
chitectures, including VGG-19 [50], DenseNet-40 [27], and ResNet-
164 [24] trained on three different datasets. All networks are trained
with a batch size of 256 for 120 epochs. Given that CoreLocker is
the first work in its domain, we propose a random weight extrac-
tion method as the baseline to demonstrate the effectiveness of our
model. For a fair comparison, we use the same extraction ratio in
CoreLocker and baseline.

Our evaluation is conducted with three commonly used datasets:
Fashion-MNIST [65], CIFAR-10, and CIFAR-100 [31]. Specifically,
the Fashion-MNIST dataset comprises 60,000 training images and
10,000 test images. These images are 28× 28 grayscale representa-
tions, distributed across 10 classes. CIFAR-10/100 both have 50,000
training images and 10,000 test images of 32 × 32, except that
CIFAR-10 includes 10 classes while CIFAR-100 has 100 classes.

5.2.2 Results. We report the top-1 test accuracy of original models,
random extraction protected models, and CoreLocker protected
models with different extraction indicators when the global extrac-
tion ratio is set as 0.05 in Table 1. From the experimental results,

CoreLocker successfully degrades all target models’ inference ac-
curacy to a level of random guessing (i.e., 1/𝑁 (𝑀 ) ). Specifically, for
Fashion-MNIST and CIFAR-10 datasets, the top-1 accuracy of all
target models post-extraction declines significantly to 10%; while
for CIFAR-100 which includes 100 classes, the target models post-
extraction reaches a mere 1% top-1 accuracy. In contrast, random
extraction only causes a limited accuracy drop. Specifically, for the
DenseNet-40 and ResNet-164 models trained on the Fashion-MNIST
dataset, the observed average accuracy reductions are 3.45% and
6.64% respectively, taken from five trials. This analysis confirms that
CoreLocker is capable of significant performance degradation even
with quite a low global extraction ratio, e.g., 0.05, which indicates
that CoreLocker can provide model usage control through neuron-
level access key extraction. We also provide the top-3 accuracy in
Figure 7, all target models post-extraction decline significantly to
3/𝑁 (𝑀 ) , i.e., all models reached an accuracy of 30.00% and 3.00%
respectively on the CIFAR-10/100 datasets. further confirming the
efficacy of the proposed approach.

To further examine whether CoreLocker can provide a fine-
grained model utility protection through customized access key
extraction, we conduct more analysis with different global extrac-
tion ratios ranging from 0.0001 to 0.05. In this experiment, we adopt
the scale factors as the extraction indicated and compare the top-1
accuracy of CoreLocker and random extraction, as demonstrated
in Figure 6. As shown in Figure 6a, on the CIFAR-10 dataset, three
networks, i.e., DenseNet-40, ResNet-164, and VGG-19, exhibit a
consistent decrease in model accuracy with respect to increasing
weight extraction ratios (from 0.0001 to 0.05). Similar results are
exhibited on CIFAR-100 dataset (as shown in Figure 6b). Such a
consistent decrease in model accuracy is crucial to our model ac-
cess control solution, potentially enabling customized access key
generation with respect to specific utility expectations in demo
models that are publicly accessible to unauthorized users.

Overall, our experimental results confirm that model owners can
regulate the model’s utility level by adjusting the key extraction
volume. For example, given a desired utility (accuracy) level of 50 –
55%, a smaller extraction ratio of 0.0050 could be performed on the
ResNet model. We postpone the detailed statistics on CoreLocker’s
capability for granular utility control to Table 5 in Appendix C.1. To
ensure the practicality of CoreLocker, we also apply it across other
widely recognized architectures such as transformers [61] and re-
current neural networks [25]. The experimental results outlined in
Tables 6 and 7 demonstrate that our approach is broadly applicable,
grounded in the essential property of impact concentration within
neural networks.

Remark: Our results reaffirm that CoreLocker can degrade a

model’s utility with fine-grained customization concerning spe-

cific utility requirements for demo models. In practice, the model

owner can establish a mapping between the extraction ratio and

model utility based on the theoretical bounds provided in Sec-

tion 4. Specifically, for a given model and desired utility level,

variables like neuron count (𝑁 ) and layer number (𝑀) are di-

rectly available as the model’s inherent attributes. The remaining

universal constants within these bounds can be estimated using

specific results from a few random extraction ratio experiments,

thus enabling a direct mapping.
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Table 1: Performance on different models and datasets with an extraction ratio of 0.05.

Fashion-MNIST CIFAR-10 CIFAR-100

Dense-40 ResNet-164 Vgg-19 Dense-40 ResNet-164 Vgg-19 Dense-40 ResNet-164 Vgg-19

Original 94.62% 94.88% 93.50% 94.04% 94.71% 93.52% 74.53% 76.02% 72.60%
Random𝑎𝑣𝑔 91.17% 88.24% 82.30% 87.41% 85.23% 88.31% 57.52% 62.79% 61.13%
CoreLocker1 10.01% 10.00% 9.72% 10.00% 10.01% 10.11% 1.04% 1.01% 1.02%
CoreLocker2 10.00% 10.01% 10.00% 10.03% 10.00% 10.00% 1.00% 1.02% 1.00%
1 CoreLocker with the ℓ1-norm as the extraction indicator.
2 CoreLocker with the scale factors as the extraction indicator.
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Figure 6: Top-1 accuracy on different extraction ratios across three neural networks on CIFAR-10 (a) and CIFAR-100 (b).
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Figure 7: Performance (top-3 accuracy) of CoreLocker on

CIFAR-10 (left) and CIFAR-100 (right) datasets.

5.3 Resilience against Attacks

In addition to its effectiveness in key extraction, CoreLocker is
also desired to be resilient against potential attacks. This includes
scenarios where an adversary might identify and neutralize the
weights CoreLocker has altered, or restore the model’s original
accuracy through additional attacks, such as model fine-tuning
with limited data. In such cases, the attacker could repurpose the
recovered model for their desired uses. This section assesses the
resilience of CoreLocker, emphasizing its effectiveness in thwart-
ing those advanced attacks, including fine-tuning attacks [3] and
model pruning attacks [39].
Against fine-tuning. As large models are trained on large-scale
datasets collected from different sources to achieve satisfactory
performance, the attacker might collect datasets from the internet
that are part of the actual training data of the protected model.
Such a fact raises the probability that the attacker may adopt a
fine-tuning attack against the protected model to reconstruct the
extracted weights [3].

To evaluate the resilience of CoreLocker against fine-tuning
attacks, we consider different sizes of datasets available to the
attackers, specifically 5% and 10% of the training data utilized in
target models for simplicity. We assessed the resilience of all three

Table 2: Accuracy recovered by fine-tuning attack with dif-

ferent fine-tuning data ratios.

Dataset Model
Fine-tuning Data

5% 10%

CIFAR-10
DenseNet-40 ▲17.23 ± 4.26 ▲23.90 ± 6.09
ResNet-164 ▲15.98 ± 8.47 ▲25.09 ± 4.11
Vgg-19 ▲15.08 ± 9.21 ▲29.52 ± 9.05

models trained on the CIFAR-10 dataset. Thosemodels are protected
by CoreLocker with the scale factor as the extraction indicator,
with a 0.05 extraction ratio (exhibits an average accuracy of 10.01%
post-protection). The accuracy recovered (denoted as ▲) by the
attacker is demonstrated in Table 2. The table establishes a general
trend: the accuracy recovery tends to increase when a larger portion
of the dataset is employed for fine-tuning. These results are based
on three trials, wherein data is randomly resampled for each trial.
Due to this random selection process, and the fact that certain data
may have a more substantial effect on the fine-tuning of the model
than others, the resulting variances can be explained. Overall, our
method demonstrates sustained resilience even when subjected to
fine-tuning with 10% of the training data, a scenario that is often
considered unrealistic in most practical situations.
Model pruning attack. The model pruning attack is an advanced
attack known as the most effective attack against encryption-based
or noise-based model protection methods [39, 66]. It operates by
pruning the parameters that are encrypted or corrupted to restore
the model performance, assuming that these protection methods
randomly encrypt or corrupt some of the parameters to degrade
the model performance. We follow the same attack setup as [66],
and test the resilience of CoreLocker using up to 40% pruning
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Table 3: Accuracy recovered by pruning attack with different

pruning ratios.

Dataset Model
Pruning Ratio

20% 40%

Fashion-MNIST
DenseNet-40 ▲0.00 ± 0.34 ▲1.04 ± 0.81
ResNet-164 ▲0.00 ± 0.20 ▲0.52 ± 0.82
Vgg-19 ▲0.00 ± 0.07 ▲0.00 ± 0.42

ratio. As shown in Table 3, the evaluated models are trained on
the Fashion-MNIST dataset, protected by CoreLocker with the
scale factor as the extraction indicator, with a 0.05 extraction ratio
(models exhibit an average of 10.00% post-protection). Clearly, even
when we adopt a 40% pruning ratio, our methodology exhibits a
completely robust defense against such attacks, i.e., less than 1%
accuracy recovery on average. This further elevates the significance
of our methodology, providing the insight that our strategy does
not merely change the model “superficially” but instead enacts
a fundamental disruption. The reason for this is the important
parameters have been identified and have already been excluded by
our algorithm, and such an attack will not be effective to ours. Such
resilience is not just an incremental improvement but a paradigm
shift in ensuring model utility protection.

6 Related Work

Model IP protection. Model IP protection aims to protect the own-
ership of intellectual property of the model from being abused. As
discussed earlier, existing passive model protection approaches like
watermarking [20, 29, 60] may have limitations in preventing unau-
thorized usage after the model’s exposure. In response, proactive
protection strategies such as model encryption have been intro-
duced. They typically necessitate decoding the model at runtime
for inference, which may still leave the decoded model susceptible
to attacks [7]. Specifically, Chakraborty et al. [8] leverage secure
hardware support to propose a key-dependent back-propagation
algorithm for training a DNN with obscured weight space. This ob-
fuscation ensures that only authorized users with access to trusted
hardware and an embedded key can use the model effectively;
unauthorized extraction and deployment of the model by attack-
ers, particularly on different devices, lead to a significant decline in
model accuracy. Besides the reliance of hardware modifications, this
technique may fall short in universal applicability to pre-trained
models. Similarly, Fan et al. [17] propose a method to protect the
model IP by integrating a passport layer into the deep neural net-
work, specifically designed to counter ambiguity attacks. Other
approaches integrate a secret key into the training data during pre-
possessing and train models to operate only with key-preprocessed
inputs [12, 45].

Recent research seeks to mitigate unauthorized access by in-
tegrating adversarial perturbations [66, 71]. The challenge of de-
ploying such approaches lies in the restricted availability of secure
memory, necessitating that only a limited number of modifications
can be made. As such, existing approaches either utilize the original

Table 4: Configuration comparison of existing methods.

Data
Access

Additional
Training

Hardware
Support

Chakraborty et al. [8]    
Chen et al. [12]   #
Fan et al. [17]   #
Pyone et al. [45]   #
Xue et al. [66]  # #
Zhou et al. [71]  # #
CoreLocker (Ours) # # #
*  (or#) refers to require (or do not require) the condition.

testing data to create perturbations [66], or set perturbations as an
optimization objective using reinforcement learning [71].

As a summary, Table 4 lists the comparison between the con-
figurations of our method to those of existing model IP protection
strategies, in terms of data access, additional training, and hard-
ware support. CoreLocker sets itself apart from other methods
that typically require original data for encryption or adversarial
perturbation generation [8, 12, 17, 45, 66, 71], as well as those re-
quiring additional training [12, 45] or hardware support [8]. It is
also worth highlighting the efficiency of CoreLocker in dynamic
scenarios where the access key needs to be regenerated when the
model undergoes significant updates. Unlike existing approaches
that typically rely on expensive retraining or fine-tuning, Core-
Locker’s lightweight and data-free nature minimizes the overhead
for regeneration.
Validation of lottery ticket hypothesis. We draw insight from
the proof frameworks that establish the existence of “lottery tickets"
to obtain the essential properties of neural networks. The Lottery
Ticket Hypothesis posits the intriguing presence of “winning ticket"
sub-networks within a randomly initialized network, which – when
trained in isolation – can reach or exceed the original network’s test
accuracy. This hypothesis was first proposed in [18] and has since at-
tracted great interest. Subsequent research endeavors, such as those
by Zhou et al. [70] and Ramanujan et al. [47], have theoretically
corroborated the existence of these sub-networks, demonstrating
their potential to perform well without the conventional training
of weights. More recent findings by Zhang et al. [69] suggest that
sub-networks capable of high performance can be identified within
pre-trained models.
Neural network pruning. Neural network pruning, a widely uti-
lized technique for model compression, enables the deployment
of models on devices with constrained resources. Over time, nu-
merous pruning methods have been proposed, demonstrating that
it’s feasible to decrease the parameter count in neural network
models by as much as 90% while incurring only a minimal loss in
performance [22, 34, 59]. Works by LeCun et al. [34] and Hassibi et
al. [22] studied the efficiency of network pruning based on second
derivative conditions. Other lines of network pruning focus on the
magnitude of the weights [21]. Other pruning techniques remove
neurons with zero activation [26], or other measures of redundancy
[51]. Recent methodologies in the field have been promoting the
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pruning of entire convolutional channels to achieve more signif-
icant performance enhancements [40, 41, 43, 67]. These pruning
techniques provide further insight, that the performance of a neural
network is largely reliant on a crucial subset of weights.

7 Conclusion

In this paper, CoreLocker emerges as a pioneering solution for
neuron-level model usage control in neural networks. It stands out
for its practicality, being lightweight, data-agnostic, and retraining-
free, and efficiently manages access key extraction. The method is
underpinned by a solid theoretical analysis that introduces a formal
framework and crucial boundaries for model usage control. Empiri-
cally, CoreLocker demonstrates effectiveness in degrading model
performance and exhibits robustness against advanced adversarial
strategies like fine-tuning and pruning attacks. This research marks
a significant advancement in neural network model protection and
usage control.
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A Supporting Lemmas & Supplementary Proofs

In this section, we present the lemmas required to prove the primary
theorems in Section 4.

A.1 Supporting Definitions and Lemmas

The circular matrix of a vector is given as follows.

Definition 2. For a vector 𝒂 = (𝑎1, · · · , 𝑎𝑛)𝑇 ∈ R𝑛 , its circular
matrix is

circ(𝒂) =


𝑎1 𝑎2 · · · 𝑎𝑛
𝑎𝑛 𝑎1 · · · 𝑎𝑛−1
.
.
.

.

.

.
. . .

.

.

.

𝑎2 𝑎3 · · · 𝑎1


.

The following lemma is to estimate the bound of a randommatrix
norm, where 𝑠1 (·) is the biggest singular value and we use ∥𝐴𝒙 ∥2 =
𝑠1 (𝐴)∥𝒙 ∥2 to estimate the norm of a random matrix, e.g., ∥𝑊 ∗𝒚∗∥2.

Lemma 1 (Singular value bound of sub-Gaussian random
matrices [62]). Given a matrix 𝐴 ∈ R𝑚×𝑛

whose rows 𝐴𝑖 are inde-

pendent, mean zero, sub-gaussian isotropic random vectors in R𝑛 , for
any 𝜏 ≥ 0,

P
{
𝑠1 (𝐴) ≤

√
𝑚 +𝐶𝑠𝐾2

𝑠 (
√
𝑛 + 𝜏)

}
≥ 1 − 2𝑒−𝜏

2
,

where 𝐶𝑠 is a universal constant and 𝐾𝑠 =𝑚𝑎𝑥𝑖 ∥𝐴𝑖 ∥2.

The following lemma about order statistics is utilized to estimate
each entry of E∥𝑊 −𝑊 ∗∥2.

Lemma 2 (Order statistics [15]). Given 𝑛 i.i.d.
5
random vari-

ables𝑈1, . . . ,𝑈𝑛 ∼ U(−𝑎, 𝑎), we have

E𝑈 2
(𝑟 ) = 𝑎

2 (𝑟 + 1)𝑟
(𝑛 + 2) (𝑛 + 1) ,

E𝑈 4
(𝑟 ) = 𝑎

4 (𝑟 + 3) (𝑟 + 2) (𝑟 + 1)𝑟
(𝑛 + 4) (𝑛 + 3) (𝑛 + 2) (𝑛 + 1) ,

where 1 ≤ 𝑟 ≤ 𝑛 is a constant and𝑈 (1) , . . . ,𝑈 (𝑛) are order statistics
of𝑈1, . . . ,𝑈𝑛 .

Note that even though the above Lemma 2 is for uniform dis-
tribution, it provides an upper bound for the weights following a
sub-gaussian distribution when considering 𝑟 is close to 𝑛 in this
work.

The next lemma estimates the upper bound of a random ma-
trix’s norm based on its expected value, which is used to estimate
E∥𝑊 −𝑊 ∗∥2 by its entry’s expected value.

Lemma 3 (Expected norm of a random matrix [33]). Let 𝐵
be a random matrix whose entries 𝐵𝑖, 𝑗 are independent mean zero

random variables with finite moment. Then

E∥𝐵∥2 ≤𝐶𝑒 [max
𝑖

(
∑︁
𝑗

E𝐵2𝑖, 𝑗 )
1
2

+max
𝑗

(
∑︁
𝑖

E𝐵2𝑖, 𝑗 )
1
2 + (

∑︁
𝑖, 𝑗

E𝐵4𝑖, 𝑗 )
1
4 ],

where 𝐶𝑒 is a universal positive constant.

5Independent and identically distributed.

Lemma 4 (Theorem 6 in [49]). Let 𝜔 = 𝑒
2𝜋𝑖
𝑝
, with 𝑖 =

√
−1

and denote by 𝑆 the 𝑝 × 𝑝 matrix that embodies the discrete Fourier

transform, the weight matrix𝑊 ∗
in a convolutional layer can be

estimated by

𝑆 =


𝜔1 · · · 𝜔𝑝

.

.

.
. . .

.

.

.

𝜔𝑝 · · · 𝜔𝑝2

 .
Given a tensor 𝐹 ∈ R𝑐×𝑐×𝑞×𝑞 , we denote 𝐾 ∈ R𝑐×𝑐×𝑝×𝑝 and

𝑊 ∗ ∈ R𝑐𝑝2×𝑐𝑝2
as the matrix encoding the linear transformation

computed by the convolutional layer parameterized by 𝐾 , as defined

in Section 4.2.2. Let 𝑃 (𝑢,𝑣) be the 𝑐 ×𝑐 matrix such that the (𝑠, 𝑡)-th el-
ement of 𝑃 (𝑢,𝑣) is equal to the (𝑢, 𝑣)-th element of 𝑆𝑇𝐾𝑠,𝑡𝑆 ,𝑢, 𝑣 ∈ [𝑝],
𝑠, 𝑡 ∈ [𝑐], or equivalently 𝑃 (𝑢,𝑣)𝑠,𝑡 = (𝑆𝑇𝐾𝑠,𝑡𝑆)𝑢,𝑣 . Then

𝑊 ∗



2 = max
𝑢,𝑣∈[𝑝 ]

∥𝑃 (𝑢,𝑣) ∥2 .

A.2 Supplementary Proofs on Properties of

Convolutional Networks

The following part proves an upper bound of ∥𝑊 ∗∥2 for convolu-
tional networks.

A.2.1 Proof for Property 4.

Proof. We have ∥𝑊 ∗∥2 = max𝑢,𝑣∈[𝑝 ] {∥𝑃 (𝑢,𝑣) ∥2} by Lemma 4,
and

𝑃
(𝑢,𝑣)
𝑠,𝑡 = (𝑆𝑇𝐾𝑠,𝑡𝑆)𝑢,𝑣 =

∑︁
𝑖, 𝑗∈[𝑞 ]

𝜔𝑢𝑖+𝑣 𝑗𝐾𝑠,𝑡,𝑖, 𝑗 .

Next, ∑︁
𝑖, 𝑗∈[𝑞 ]

𝜔𝑢𝑖+𝑣 𝑗𝐾𝑠,𝑡,𝑖, 𝑗 ≤


𝐾𝑠,𝑡 

2 = 

𝐹𝑠,𝑡 

2

≤√𝑞 +𝐶𝑠𝐾2
𝑠 (
√
𝑞 + 𝜏).

Then by Lemma 1 we have

𝑊 ∗


2 = max

𝑢,𝑣∈[𝑝 ]
{∥𝑃 (𝑢,𝑣) ∥2}

≤ max
𝑢,𝑣∈[𝑝 ]

{
∑︁

𝑠∈[𝑐′ ],𝑡 ∈[𝑐 ]
∥𝑃 (𝑢,𝑣)𝑠,𝑡 ∥2}

≤ max
𝑢,𝑣∈[𝑝 ]

{
𝑐𝑐′



𝐹𝑠,𝑡 

2}
≤𝑐𝑐′ [√𝑞 +𝐶𝑠𝐾2

𝑠 (
√
𝑞 + 𝜏)]

≤𝐶2 [
√︁
𝑄 +𝐶𝑠𝐾2

𝑠 (
√︁
𝑄 + 𝜏)] .

Lastly, we calculate the probability when this inequality holds.

P{


𝑊 ∗



2 ≤ 𝐶2 [
√︁
𝑄 +𝐶𝑠𝐾2

𝑠 (
√︁
𝑄 + 𝜏)]}

=
∑︁

𝑠∈[𝑐′ ],𝑠∈[𝑐 ]
P{∥𝐹𝑠,𝑡 ∥2 ≤ √

𝑞 +𝐶𝑠𝐾2
𝑠 (
√
𝑞 + 𝜏)}

=(1 − 2𝑒−𝜏
2
)𝑐𝑐

′

≥(1 − 2𝑒−𝜏
2
)𝐶

2
.

□

Then, we can approximate the upper bounds of output for convolu-
tional networks.
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A.2.2 Proof for Property 5.

Proof. By Lipschiz constant of the activation function and the
upper bound of the transformed convolutional weight matrix by
Property 4,

∥𝒚∗,(𝑚) ∥2

=∥𝜙 (𝑊 ∗,(𝑚)𝒚∗,(𝑚−1)
𝑘

)∥2

=∥𝜙 (𝑊 ∗,(𝑚)𝒚∗,(𝑚−1)
𝑘

) − 𝜙 (0)∥2
≤𝐿∥𝑊 ∗,(𝑚)𝒚∗,(𝑚−1) − 0∥2
=𝐿∥𝑊 ∗,(𝑚)𝒚∗,(𝑚−1) ∥2
≤𝐿𝑐𝑐′𝜆∥𝒚∗,(𝑚−1) ∥2
≤(𝐿𝑐𝑐′𝜆)2∥𝒚∗ (𝑚−2) ∥2
· · ·

≤(𝐿𝑐𝑐′𝜆)𝑚 ∥𝒙 ∥2
≤(𝐿𝐶2𝜆)𝑚 ∥𝒙 ∥2,

where 𝜆 =
√
𝑞 +𝐶𝑠𝐾2

𝑠 (
√
𝑞 + 𝜏). Then we calculate the probability

that this inequality holds,

P{∥𝒚∗,(𝑚) ∥2 ≤ (𝐿𝐶2𝜆)𝑚 ∥𝒙 ∥2}

=

𝑚∏
𝑘=1
P
{

𝑊 ∗



2 ≤ 𝐶2𝜆
}

≥(1 − 2𝑒−𝜏
2
)𝐶

2𝑚 .

□

Next, we give the upper bound for ∥𝑊 (𝑚) −𝑊 ∗,(𝑚) ∥2.

A.2.3 Proof for Property 6.

Proof. The non-zero filters 𝐹 ∗ composing of𝑊 (𝑚) −𝑊 ∗,(𝑚)

are {𝐹 ∗𝑠,𝑡 | (𝑠, 𝑡) ∈ I}. For any 𝐹 ∗𝑠,𝑡 by Lemma 2,

E|
∑︁

𝑖, 𝑗∈[𝑞 ]
𝐹 ∗𝑠,𝑡,𝑖, 𝑗 |

2 ≤E|
∑︁

𝑖, 𝑗∈[𝑞 ]
𝐹 ∗𝑠𝐷 ,𝑡𝐷 ,𝑖, 𝑗 |

2

=𝑞2𝐶2
𝑤

(𝐷 + 1)𝐷
(𝐷 + 2) (𝐷 + 1)

≤𝑞2𝐶2
𝑤

(2𝐷)2
𝐷2 = 4𝑞2𝐶2

𝑤

and

E|
∑︁

𝑖, 𝑗∈[𝑞 ]
𝐹 ∗𝑠,𝑡,𝑖, 𝑗 |

4 ≤E|
∑︁

𝑖, 𝑗∈[𝑞 ]
𝐹 ∗𝑠𝐷 ,𝑡𝐷 ,𝑖, 𝑗 |

2

=𝑞4𝐶4
𝑤

(𝐷 + 3) (𝐷 + 2) (𝐷 + 1)𝐷
(𝐷 + 4) (𝐷 + 3) (𝐷 + 2) (𝐷 + 1)

≤𝑞4𝐶4
𝑤

(2𝐷)4
𝐷4

=16𝑞4𝐶4
𝑤 .

Similar to Property 3 by Lemma 3, let 𝐷𝑤 be the maximum number
of the extracted filters, we gave

E


𝑊 −𝑊 ∗



2 =E max
𝑢,𝑣∈[𝑝 ]

{
∑︁

(𝑠,𝑡 ) ∈I,𝑖, 𝑗∈[𝑞 ]



𝐹𝑠,𝑡,𝑖, 𝑗 

2}
≤6𝑞2𝐶𝑒𝐶𝑤

√︁
𝐷𝑤

By Markov’s inequality, for all 𝜇 ≥ 0,

P{∥𝑊 −𝑊 ∗∥2 ≥ 𝜇} ≤E∥𝑊 −𝑊 ∗∥2
𝜇

≤ 6𝑞2𝐶𝑒𝐶𝑤
√
𝐷𝑤

𝜇

≤ 6𝑄2𝐶𝑒𝐶𝑤
√
𝐷𝑤

𝜇
.

□

B Meta-Review

The followingmeta-reviewwas prepared by the program committee
for the 2024 IEEE Symposium on Security and Privacy (S&P) as
part of the review process as detailed in the call for papers.

B.1 Summary

The paper introduces CoreLocker, a novel method for protecting
deep neural network models from unauthorized use. It extracts
a critical subset of the model’s weights, effectively serving as an
access key that limits full functionality to authorized users. The
proposed methods are tested across various neural architectures,
demonstrating its effectiveness in significantly reducing unautho-
rized performance while ensuring easy restoration for legitimate
users.

B.2 Scientific Contributions

• Provides a Valuable Step Forward in an Established Field

B.3 Reasons for Acceptance

• This paper provides a valuable step forward in an established
field. The paper proposes a novel problem setting in AI model
usage control, and addresses it with a simple yet effective
method.
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C Additional Experiments and Statistics

C.1 Granular Utility Control

Table 5: Granular utility control (5% granularity) on ResNet-

164 and DenseNet-40 trained on CIFAR-100.

Extraction
Ratio

ResNet-164 DenseNet-40

Utility Range (%) Utility Range (%)

0.0005 73.3% 70 – 75 70.2% 70 – 75
0.0010 71.6% 70 – 75 66.3% 65 – 70
0.0015 69.3% 65 – 70 63.5% 60 – 65
0.0020 66.6% 65 – 70 60.0% 60 – 65
0.0025 63.1% 60 – 65 55.9% 55 – 60
0.0030 61.3% 60 – 65 53.7% 50 – 55
0.0035 59.7% 55 – 60 51.5% 50 – 55
0.0040 56.3% 55 – 60 47.4% 45 – 50
0.0045 53.2% 50 – 55 43.6% 40 – 45
0.0050 51.9% 50 – 55 43.1% 40 – 45
0.0055 45.9% 45 – 50 39.3% 35 – 40
0.0060 43.9% 40 – 45 36.7% 35 – 40
0.0065 41.0% 40 – 45 34.1% 30 – 35
0.0070 35.7% 35 – 40 29.3% 25 – 30
0.0075 32.0% 30 – 35 27.2% 25 – 30
0.0080 32.2% 30 – 35 25.2% 25 – 30
0.0085 28.7% 25 – 30 25.0% 20 – 25
0.0090 27.9% 25 – 30 20.8% 20 – 25
0.0095 26.7% 25 – 30 19.5% 15 – 20
0.0100 24.4% 20 – 25 19.5% 15 – 20

C.2 Compatibility with Other Model

Architectures

Table 6: CoreLocker’s access control capability on mod-

els with other popular architectures (BERT, CNN-LSTM, Vi-

sion Transformer). With a global extraction ratio of 0.05,

all settings reached an expected utility level for access con-

trol (𝐴𝑐𝑐 ≈ 1/𝑁𝑐𝑙𝑎𝑠𝑠 ) post-extraction. Results confirm that

CoreLocker is model-independent, as it is built on the fun-

damental characteristic of impact concentration in neural

networks.

Model Architecture Dataset # Class Original CoreLocker

BERT Transformer AG News 4 87.2% 25.3%
CNNLSTM CNN, RNN CIFAR-10 10 81.1% 10.0%

ViT Transformer CIFAR-100 100 81.4% 1.4%

Table 7: Granular utility control on Vision Transformer (ViT)

trained on CIFAR-100 dataset. Model owners may regulate

the model’s utility level by adjusting the key extraction vol-

ume.

Extraction Ratio Utility (Accuracy) Utility Range (%)

0.0000 81.4% -
0.0050 74.2% 70 – 80
0.0100 65.0% 60 – 70
0.0150 58.1% 50 – 60
0.0200 41.8% 40 – 50
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