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Abstract—The growing complexity of deep neural network
models in modern application domains necessitates a complex
training process that involves extensive data, sophisticated
design, and substantial computation. The trained model inher-
ently encapsulates the intellectual property owned by the model
developer (or the model owner). Consequently, safeguarding the
model from unauthorized use by entities who obtain access
to the model (or the model controllers), i.e., preserving the
fundamental rights and proprietary interests of the model
owner, has become a critical necessity.

In this work, we propose CORELOCKER, employing the
strategic extraction of a small subset of significant weights
from the neural network. This subset serves as the access key
to unlock the model’s complete capability. The extraction of the
key can be customized to varying levels of utility that the model
owner intends to release. Authorized users with the access key
have full access to the model, while unauthorized users can
have access to only part of its capability. We establish a formal
foundation to underpin CORELOCKER, which provides crucial
lower and upper bounds for the utility disparity between
pre- and post-protected networks. We evaluate CORELOCKER
using representative datasets such as Fashion-MNIST, CIFAR-
10, and CIFAR-100, as well as real-world models including Vg-
gNet, ResNet, and DenseNet. Our experimental results confirm
its efficacy. We also demonstrate CORELOCKER’s resilience
against advanced model restoration attacks based on fine-
tuning and pruning.

1. Introduction

Deep neural networks (DNNs) have seen remarkable
success in various fields, yet developing a high-quality
model often demands substantial resources. This includes
sophisticated architectural design, extensive high-quality
data, meticulous fine-tuning, and optimization [1], and sub-
stantial computational power [2], [3]. Taking GPT-3 [4] as
an example, it consists of 175 billion parameters and takes
355 GPU-years and $4.6M for a single training run [5]. A
model thus represents a valuable intellectual property (IP),
and transforms into a treasure of its developer. For instance,
a recent study by Fortune [6] shows that ChatGPT has at-
tracted 100 million active users two months after its launch,
and earns $80 million per month for OpenAI.

In contrast to the traditional deployment of DNN models
within the server or cloud under the direct control of the
model owner, various scenarios, such as commercial part-
nerships, consulting services, and on-device inference, entail
the transfer of the model to an external party, referred to as
the model controller. Nevertheless, once the model is handed
over to the model controller, the owner loses control over it.
Indeed, a recent study [7] on 1,468 mobile apps uncovers
that 41% of them fail to secure their DNN models against
on-device model inference attacks, allowing the attacker to
extract all model parameters through reverse engineering.
Consequently, unethical controllers may exploit the obtained
model for unscrupulous competition or unauthorized sublet-
ting, posing financial losses for the model owners. Moreover,
malicious controllers can abuse the model to facilitate the
generation of adversarial examples [8]–[10] to attack the
model owner’s legitimate services.

Two lines of research are seemingly potential to alleviate
this challenge, including passive methods and active meth-
ods. Passive methods involve embedding a watermark [11]–
[16] or signature [17], [18] into the model, which manifests
only when certain inputs are given to the model, enabling the
owner to claim the ownership of the model. Such methods
often fail to prevent unauthorized usage after the model’s
exposure, and the incentives for theft remain. On the other
hand, active methods introduce keyed data and keyed neu-
rons. The former integrates a secret key into the training
data during the preprocessing and trains a model to operate
only with key-preprocessed inputs [19], [20]. This strategy
entails retraining models for each key, rendering it extremely
time-consuming and unsuitable for pre-trained models. The
latter embeds the key into neurons, which undermines the
utility of the entire model unless the key is known by the
model controller for neutralization [21], [22]. Nevertheless,
these approaches entail meticulous perturbation generation
and specialized hyperparameter selection when determining
the key, and the key has been shown to be detectable and
removable through out-of-distribution value detection [23],
[24], pruning [25] and fine-tuning [26].
Our work. In this work, we explore a novel defense
paradigm that takes a step forward from conventional pa-
rameter perturbation approaches, focusing instead on the
fundamental structural bedrock that determines a neural
network’s functionality. Our work endows the model owner



with the capability to tailor the model into a low-utility
version, which can be fully restored after authorization. This
capability holds broad applicability in online services such
as machine learning as a service (MLaaS) [27], and on-
device model deployment, where model owners strategically
offer lower-utility models to entice users toward purchasing
full- or higher-utility versions. Real-world examples include
cutout.pro [28] and together.ai [29], which provide models
with free low utility options or varying capabilities at differ-
ent price points. Specifically, we aim to answer the research
question of how to degrade a model’s performance to a
lower utility level while ensuring that the full utility can be
efficiently restored by authorized controllers?

We propose CORELOCKER, which locks a minimal sub-
set of neurons from the pre-protected neural network (de-
noted as f∗), parameterized by 0 < α < 1, leading to
a subnetwork of f∗ with partial or none utility (which
is thus denoted as fα). We formalize an ideally-unusable
network (denoted as f0) which conducts random inference,
and in the extreme requirement where the capability of the
network needs to be fully hidden, the resulting fα should
be proximate to f0 in its performance, i.e., f∗ ≫ fα ≈
f0 if we abuse f− to denote the performance of them-
selves. CORELOCKER aims for a training data-agnostic and
retraining-free process by directly operating on off-the-shelf
pre-trained networks, making it well-suited for seamless
integration across diverse neural network architectures.

CORELOCKER’s solution stems from an intuitive yet
compelling insight: if the performance of a neural network
is disproportionately dependent on a specific small subset
of critical weights, removing these weights is likely to have
the potential to incapacitate the network. In particular, it
employs an efficient selective weight removal, based on the
intrinsic attributes of a neural network, including the ℓ1-
norm of weights and the scaling factors of batch normaliza-
tion layers, as key criteria for its weight selection (property
of efficient extraction). These selected weights, referred
to as the access key, are few in number and are handled
through the secure channel to ensure the model’s original
utility is readily recoverable upon restoration (property of
efficient authorized restoration). However, the removal of
the key makes it extremely complex to restore the original
network (property of complex unauthorized restoration).
As shown in a recent study [30], it requires millions of years
for an IBM Summit supercomputer to crack a multi-layer
neural network.

We provide a robust formal foundation for CORE-
LOCKER’s neuron-level usage control, which establishes
both lower and upper bounds of the proximity and disparity
among f∗, fα, and f0. Our formalization captures two
essential characteristics of neural networks, including the
distribution preservation during training [31], [32] and the
impact concentration of weights. This formalization enables
the use of probabilistic approaches to analyze the behavior
of the trained network, by highlighting that the weights
of a trained network preserve the probability distribution
established during initialization [31], [32]. The impact con-
centration underscores that the performance of a neural

network is largely reliant on a crucial subset of weights. This
concept is seemingly the dual of the principle behind various
pruning studies [33]–[36] that the majority of neurons can be
pruned with negligible impact. Despite the pruning principle
formally proved by a recent study [34], establishing a formal
proof for impact concentration is more challenging, as it has
to handle duplication and correlation among neurons. We
for the first time address it in this work through deriving
the bounds of the gaps among the outputs of f∗ and fα

layer by layer (see Section 4).
We conduct both qualitative and practical evaluations to

investigate the performance of CORELOCKER. The quali-
tative analysis corroborates our theoretical framework, em-
pirically revealing the relationship between the depth and
width of a target network and the output disparity among
f∗ and fα. The practical study illustrates the effectiveness
of CORELOCKER on protecting real-world models. In par-
ticular, we apply CORELOCKER to three commonly-used
datasets, along with prevalent deep neural network archi-
tectures such as ResNet-164 [37]. With a global extraction
ratio set as low as 0.05, the performance of all models
diminishes to the level of random guessing (e.g., 1% for
CIFAR-100) across all datasets. Furthermore, we expose
CORELOCKER to attacks based on fine-tuning [26] and
pruning [25], showcasing its resilience against advanced
adversarial strategies.
Contributions. Our main contributions in this work are
listed as follows.

• A new research problem. We establish a crucial
research problem of AI model usage control, which
requires a neuron-level lock of the model’s utility
while ensuring that its full utility can be efficiently
restored for authorized use with an access key.

• A generic defense paradigm. CORELOCKER is
the first practical active schema for neuron-level
usage control, distinguished by its lightweight, data-
agnostic, and retraining-free attributes. It efficiently
identifies and extracts the access key out of the target
model.

• A formal framework and theoretical analysis.
We establish a formal foundation for the theoretical
analysis of model usage control. It for the first time
formalizes several key characteristics of weights in
a neural network, and provides crucial bounds that
guarantee the efficacy of CORELOCKER, an inde-
pendent confirmation of provable guarantees of AI
model usage.

• An empirical evaluation. We implement CORE-
LOCKER and evaluate it on representative datasets
and real-world models. Our results confirm its effi-
cacy. For example, with a mere 0.05 extraction ratio,
it efficiently and consistently degrades the perfor-
mance of all tested models to the level of random
guessing. We also demonstrate that CORELOCKER
remains robust against advanced adversarial strate-
gies, such as fine-tuning attacks and pruning attacks.
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Notations. The notations used throughout this paper are
listed as follows. Lower-case Latin letters, e.g., a, i, u,
and x, denote variables and upper-case Latin letters denote
constants like C, M , and N , or matrices like S and W .
The calligraphic font represents a set, e.g., I. Greek letters
are used as hyperparameters. Bold lower-case letters refer
to the vector, such as a, x, y. xi is the i-th element of the
vector x. 0 or 1 represent a vector/matrix that has all its
elements equal to zero or one. We use Wi to represent the
i-th row of the matrix W and Wi,j the entry/element of the
i-th row and j-th column. WT is the matrix transpose of
W . The norm of a matrix refers to the operator norm, i.e.,
∥A∥n = sup{Ax | ∥x∥n ≤ 1,v ∈ Rn, A ∈ Rm×n, n > 0}.

2. Problem Formulation

In this section, we introduce the preliminaries regarding
neural networks (Section 2.1) to facilitate the understanding
of our work. We then define the threat model (Section 2.2)
and the problem of neuron-level usage control (Section 2.3).

2.1. Neural Networks

A neural network can be conceptualized as a composite
of linear and nonlinear (activation) functions, with an ar-
chitecture containing multiple hidden layers. The activation
function is denoted as ϕ(·) : R → R.

The standard fully-connected neural network f∗(x) :

RN(0) → RN(M)

with M layers can be structured as

W ∗,(M)ϕ
(
· · ·W ∗,(2)ϕ

(
W ∗,(1)x+ b(1)

)
+ b(2)

)
+ b(M),

where the input layer is denoted as the 0-th, and the M -
th represents the output layer1. For each layer m ∈ [M ],
the associated weight matrix is expressed as W ∗,(m). The
network receives an input x, which generates a correspond-
ing output y∗. It is posited that for any given input x,
∥x∥2 ≤ 1. The term y∗,(m) signifies the output of the m-th
layer, with y∗,(0) = x and y∗,(M) = y∗. The notation N (m)

represents the count of neurons in the m-th layer, with N
being the maximum number among the neuron counts across
all layers, i.e., N = max{N (1), N (2), · · · , N (M)}.

The convolutional neural network is transformed into
a specialized form of a fully connected network in this
work. Specifically, it involves processing an input tensor
X ∈ Rc×p×p and producing an output tensor Y ∈ Rc′×p×p.
The convolutional filters, denoted as F ∗

s,t ∈ Rq×q, are
associated with the s-th (s ∈ [c′]) output channel and
the t-th (t ∈ [c]) input channel, where c and c′ are the
numbers of input and output channels, and p denotes the
shape of the input and output tensor. We establish that these
convolutional filters can be converted into weight matrices
W ∗. The details of this transformation are further explored
in Section 4.2.2.

1. A component-wise function applied to a vector operates on each
element individually.

Access Key 
Extraction

𝑓!𝑓∗

Release To 
Public

Figure 1: An illustration of the CORELOCKER workflow.

2.2. Threat Model

In this section, we outline the scope of CORELOCKER,
and define the attacks CORELOCKER aims to defend against,
in terms of the information available to them and the oper-
ations they can conduct on the obtained model.
Scope. The attacker CORELOCKER takes into consideration
aims to obtain the complete neural network model. The
possession of the model by them opens avenues for various
potential abuses, such as monetization through unautho-
rized commercial services, or facilitating the generation of
adversarial examples [8], [9] against the model owner’s
legitimate services. The focus of CORELOCKER is to estab-
lish a formally assured neuron-level access key generation,
aiming to achieve the three fundamental properties outlined
in Section 1. With access keys, existing techniques like
hardware-assisted [38] and TEE-based management [39] can
offer high-assurance or revocable usage control.
Attacker capabilities. The attacker has access to weight
parameters of the model that is under the control of the
model controller, either via a public cloud platform or
due to information breaches caused by malicious malware
infection or insider sources. We assume the access is white-
box, which is in favor of the attacker. Thus, the attacker is
also aware of the network architecture employed in training
the model. This assumption makes the threat model prag-
matic, as industrial applications typically adopt published
DNN architectures, which have demonstrated high modeling
capabilities. The attacker owns limited training data that
is of identical distribution as the model’s training data, as
otherwise, they can train a competitive model on their own.

The attacker may detect the manipulation of the protec-
tion mechanism on the network and counteract their negative
effects [23], [24]. We consider the attacker’s strategy of
recovering the utility of the protected model through fine-
tuning [26] or model pruning [25], which intend to adjust or
remove the parameters that are manipulated. Once the model
functionality recovers, the attacker adapts it for intended
applications.

2.3. Neuron-level Usage Control

Given a target neural network f∗, the objective of CORE-
LOCKER is to locate a sub-network fα, where α is the
retention ratio, such that fα becomes less functional without
the extracted access key. In extreme requirements where the
network’s functionality needs to be completely hidden, the
resulted fα should become non-functional in the absence of
the extracted access key. Figure 1 provides a brief overview
of this workflow.
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Figure 2: Illustration of the proximity and disparity among
f∗, fα, and f0.

Ideally unusable network f0. CORELOCKER is designed
to meet the extreme requirement that fα loses all its utility.
To represent this as a reference model, we define an ideally
unusable network, denoted as f0, by setting all weights of
f∗ to zeros, such that f∗ transforms into a constant function,
i.e., f∗ = f0 = c, where c is a constant vector depending
on the bias of the last layer of f∗. When the test dataset
is evenly distributed, meaning that each class contains an
equal number of samples, the constant nature of f0’s output
implies that it will correctly identify only the class that
matches this constant output. Therefore, the accuracy of f0

is effectively 1/N (M), with N (M) being the total number
of classes. An illustration is displayed in Figure 2.

3. Our Approach: CORELOCKER

The core of CORELOCKER is to extract the access key
from f∗. In this section, we detail this process.

3.1. Access Key Extraction

CORELOCKER extracts the access key by zeroing out
a certain number of weights by the extraction ratio 1 − α
for each weight matrix W (m) for fully-connected networks
f∗ and filters F ∗

s,t for convolutional networks. The retain
ratio α describes the ratio of retained weights or filters.
After this extraction process, the resulting network becomes
a subnetwork of f∗ by retain ratio α, denoted by fα. We
denote the weight or the filter after extracting as W (m) or
F (m), compared to the original ones W ∗,(m) or F ∗,(m). In
this work, there is no extraction in input and output layers,
i.e., W (1) = W ∗,(1) and W (M) = W ∗,(M). Specifically, the
CORELOCKER’s access key extraction process is defined as
follows.

Definition 1 (Access Key Extraction). The access key ex-
traction refers to zeroing out the weight on the weight matri-
ces W ∗2 according to the indicator set I, which contains the
indicator (i, j) of the extracted weights W ∗

i,j . To determine
I, each entry W ∗

i,j of W ∗ is listed in ascending order based
on the specific extraction indicator with the total number of
D. By setting an extraction threshold Dα (α ∈ [0, 1]) such
that 1 ≤ Dα ≤ D, we let I := {(ik, jk) | Dα ≤ k ≤ D, k ∈

2. The superscript for the layer index is omitted when referring to each
layer unambiguously.

Z} to set the indices of weights to be extracted, where k
means the entry W ∗

i,j is the k-th one in the ordering.

Remark. This definition aptly applies to both weights
and filters, given their conceptual similarity shown by
Han et al. [40]. For a convolutional neural network, the
ℓ1 norm of the filter, specifically the sum of the absolute
values of the filter weights, serves as the extraction
indicator.

Given the objective of rendering fα dysfunctional, a
natural question might arise: how many weights need to be
extracted to achieve a utility that is close enough to that of
f0? To answer this question, the underlying intuition is that
even minor alterations within a neural network can initiate a
butterfly effect, where these changes, though small, build up
and magnify, significantly impacting the network’s behavior.
Adopting this perspective sets a clear goal: to identify a
sufficiently small extraction ratio 1− α such that

∥fα − f0∥ ≤ ϵ,

where ϵ represents a small constant and ∥·∥ denotes a
measurement to quantify the utility difference between pre-
and post-protected models, e.g., the accuracy of a neural
network on a specified dataset.

3.2. Extraction Criteria

The efficacy of CORELOCKER’s extraction procedure
relies on the precise selection of weight subsets, whose re-
moval is expected to notably affect the model’s performance.
Given this context, it is a logical first step to extract weights
linked to larger layer outputs. This is based on the insight
that such weights in a neural network are typically con-
sidered more impactful due to their ability to significantly
amplify inputs, thereby having a substantial influence on the
model’s predictions (discussed in Section 4.3). Therefore,
we adopt the following metrics to assess the significance of
weights in the extraction strategy.
ℓ1-norm. The absolute value of each weight can be regarded
as an indicator of the weight’s importance, and for filters,
this is measured by the sum of the absolute kernel weights,
i.e., the ℓ1-norm [40], [41]. Specifically, for ℓ1-norm based
weight extraction, the process of extracting n filters from the
i-th convolutional layer is succinctly described as follows.

1) to compute the sum of absolute kernel weights for each
filter F ∗

s,t,
2) to arrange the filters in ascending order based on the

sum value,
3) to remove the n filters with the highest sum values,

along with their associated feature maps, and
4) to remove the filters in the subsequent convolutional

layer that are linked to these removed feature maps.
Filters that are removed during this process are then cat-
aloged in the access key. Figure 3 intuitively shows that
filters with a higher ℓ1-norm value capture more detailed
features. Filters with a lower sum of weights tend to capture
a narrower range of features, whereas those with a higher
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Figure 3: Visualization of feature maps (the top and bottom
six) and corresponding filters (all 64 filters) from the first
convolutional layer of a VggNet, sorted by filters’ ℓ1-norm.

weight sum exhibit a stronger capability in feature capture.
This distinction underscores the efficacy of the proposed
indicator.
Scaling factors. To further reduce the computational com-
plexity of calculating the ℓ1-norm across all weight matrices,
we propose an alternative approach by extracting filters (or
neurons in fully-connected layers) associated with higher
scaling factors, as such filters are often linked to larger
layer outputs. This strategy is inspired by the prevalent
use of batch normalization (BN) layers following convo-
lutional layers, which incorporate channel-specific scaling
and shifting parameters [42]–[44]. Specifically, let yin and
yout be the input and output of a BN layer, and the BN
layer executes a transformation defined by the equation
yout = γ(yin − µ)/

√
σ2 + ϵ + β, where µ and σ are

the mean and standard deviation values of inputs over a
mini-batch, γ and β are trainable parameters (scale and
shift) which provide the possibility of linearly transform-
ing normalized values back to any scales [42], [44]. The
γ parameters in BN layers can serve as effective scaling
factors. The underlying rationale of this approach aligns
with the ℓ1-norm method in which it can be merged with
the adjacent linear transformation. By adopting this metric,
we can estimate the importance of filter weights without
any direct calculations, rendering it particularly suitable for
increasingly larger models.

4. Theoretical Analysis

In this section, we establish a formal foundation for
the theoretical analysis of neuron-level usage control. Sec-
tion 4.1 lists two assumptions about the Lipschitz property
of activation functions and distribution of weights, which
are used in the following theoretical proofs. Section 4.2
discusses the properties of weights and outputs of a neural
network by taking weight matrices as random matrices to
estimate operator norms. Section 4.3 and Section 4.4 provide
the theoretical guarantee for CORELOCKER, forming the
performance dynamics (Figure 4a) and disparity bounds
(Figure 4b) as the extraction ratio increases.
Theoretical framework architecture. Theorem 1 in Sec-
tion 4.3 reveals that selectively extracting a small subset
of high-value weights can result in fα nearing f0, by

analyzing the performance of fα from the standpoint of
output variances. Section 4.4 explores the range of local
variations in output between fα and f∗, detailing both the
lower (Theorem 2) and upper bounds (Theorems 3 and 4)
of these variations.

4.1. Assumptions

This section illustrates two assumptions about activation
functions and weights of the neural network for the theoret-
ical proofs.

Assumption 1 (Activation Function). The activation func-
tion ϕ satisfies the Lipschitz property that for any two values
x1 and x2 in the domain of ϕ, |ϕ(x1)−ϕ(x2)| ≥ L|x1−x2|
holds true, where L represents a positive constant known
as the Lipschitz constant. Additionally, ϕ is monotonic and
ϕ(0) = 0.

Note that, for ϕ(0) = 0, a linear transformation before the
activation can be applied, allowing any activation function
to satisfy this requisite. The properties defined in Assump-
tion 1 are satisfied by most of those widely-used activation
functions, such as ReLU and Tanh. In this work, we set a
common Lipschitz constant L for all activation functions in
a neural network.

Assumption 2 (Weight Distribution). The weights in the m-
th layer are independently and identically distributed (i.i.d.),
following a sub-Gaussian distribution subG(σ2), where σ

represents the standard deviation, and each weight w(m)
ij is

bounded by |w(m)
ij | ≤ Cw, where Cw is the maximum of

these bounds across all layers.

The distribution of the weights is determined by the initial-
ization, commonly a sub-Gaussian distribution, and affected
by the training process. For example, Kaiming initialization
is based on N (0, 2

n ) [45], where n is the neuron number of
the layer. As has been established in previous studies [31],
[32], after the training processes, the weights still follow a
sub-Gaussian distribution, which approaches the initialized
distribution.

4.2. Properties of Neural Networks

This section discusses the properties of neural networks
that our formal proofs rely on. We take weight matrices as
random matrices because the numerous weights follow sub-
Gaussian distributions after initialization and training (As-
sumption 2). The overall insight is to treat each layer as
a composition of linear and non-linear transformations and
estimate the output range by its norm. The linear transforma-
tion is equivalent to a matrix multiplication, and non-linear
transformation (activation function) is upper bounded by the
Lipschitz property.

The following properties focus on providing bounds for
the weight matrix ∥W ∗,(m)∥, the output ∥y∗,(m)∥2, and
the difference between pre- and post-extraction weights
∥W (m) −W ∗,(m)∥ for the m-th layer. Their proofs rely on
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the properties of random matrices that are summarized as
lemmas in Appendix A.1.

4.2.1. Properties of Fully-connected Networks. We start
with exploring the properties of fully-connected networks.

Property 1 (Bounding Weight Matrix). Given a fully-
connected network, its weight matrix W ∗,(m) satisfies, for
any τ > 0,

∥W ∗,(m)∥2 ≤
√
N + CsK

2
s (
√
N + τ),

with a probability of at least 1 − 2e−τ2

, where Cs is a
universal constant and Ks = maxi ∥W ∗,(m)

i ∥2.

Proof. By Lemma 3 and Assumption 2,

P{s1(W ∗,(m)) ≤
√

N (m) + CsK
2
s (
√

N (m−1) + τ)}
≥1− 2e−τ2

.

Given N = max{N (1), N (2), · · · , N (M)},

s1(W
∗,(M)) ≤

√
N (m) + CsK

2
s (
√

N (m−1) + τ)

≤
√
N + CsK

2
s (
√
N + τ).

Property 2 (Bounding Output). Given a fully-connected
network, its output y∗,(m) satisfies, for any constant τ > 0,

∥y∗,(m)∥2 ≤ (Lλ)m∥x∥2,

with a probability of at least (1 − 2e−τ2

)m, where λ =√
N +CsK

2
s (
√
N + τ). Cs is a universal constant and Ks

depends on weight matrices.

Proof. We denote s1(A) as the maximum singular value of
A and set λ =

√
N + CsK

2
s (
√
N + τ) as the upper bound

of the maximum singular value of all weight matrices by
Property 1. By Lipschiz property of the activation function
ϕ and ∥Ax∥ = s1(A)∥x∥,

∥y∗,(m)∥2 =∥ϕ(W ∗,(m)y
∗,(m−1)
k )∥2

=∥ϕ(W ∗,(m)y
∗,(m−1)
k )− ϕ(0)∥2

≤L∥W ∗,(m)y∗,(m−1) − 0∥2
=L∥W ∗,(m)y∗,(m−1)∥2
=Ls1(W

∗,(m))∥y∗,(m−1)∥2
≤Lλ∥y∗,(m−1)∥2
≤(Lλ)2∥y∗(m−2)∥2
· · ·

≤(Lλ)m∥x∥2.
Then we calculate the probability that this inequality holds
by Property 1,

P{∥y∗,(m)∥2 ≤ (Lλ)m∥x∥2}

=

m∏
k=1

P{∥W ∗,(k)y∗,(k−1)∥2 ≤ s1(W
∗,(k))∥y∗,(k−1)∥2}

≥(1− 2e−τ2

)m.

Property 3 (Bounding Difference of Weight Matrices). Give
a fully-connected network with its post-extraction network,
∥W (m) −W ∗,(m)∥2 satisfies, for any constant µ > 0,

∥W (m) −W ∗,(m)∥2 ≥ µ,

with a probability of at most 6CeCw

√
Dw

µ , where Dw is the
maximum number of extracted weights across all layers. Ce

and Cw are universal constants.

Proof. Omitting the layer index, the non-zero entries of W−
W ∗ are {Wi,j − W ∗

i,j | (i, j) ∈ I}. Then, according to
Lemma 2, for any w = Wi,j −W ∗

i,j we have

E|w|2 ≤E|W ∗
iD,jD |

2

=C2
w

(D + 1)D

(D + 2)(D + 1)

≤C2
w

(2D)2

D2

=4C2
w,

E|w|4 ≤E|W ∗
iD,jD |

4

=C4
w

(D + 3)(D + 2)(D + 1)D

(D + 4)(D + 3)(D + 2)(D + 1)

≤C4
w

(2D)4

D4

=16C4
w.

The expected norm of W and W ∗ can be obtained by
Lemma 3,

E∥W −W ∗∥2
≤Ce[(Dw · 4C2

w)
1
2 + (Dw · 4C2

w)
1
2 + (D2

w · 16C4
w)

1
4 ]

=6CeCw

√
Dw.

By Markov’s inequality, for any µ > 0,

P{∥W −W ∗∥2 ≥ µ} ≤ E∥W −W ∗∥2
µ

≤ 6CeCw

√
Dw

µ
.

4.2.2. Properties for Convolutional Networks. This sec-
tion first illustrates the form conversion from a convolutional
layer to a fully-connected layer and then lists the properties
of convolutional networks by considering the filter weight
matrices.
Conversion from convolutional layer to fully-connected
layer. A convolutional layer can be converted to a fully-
connected layer based on the fact that they both apply linear
transformations [34], [46]–[48]. Considering that the input
for a convolutional layer is a multi-channel image, we will
use a three-dimensional tensor representing channel, width,
and height as the input in subsequent sections.

For simplicity, we let the input tensor X and the output
tensor Y of the m-th convolutional layer differ in their chan-
nel dimension but share the same width and height dimen-
sions. We then define the matrix W ∗,(m) transformed from
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the convolutional m-th layer with filters F
∗,(m)
s,t ∈ Rq×q,

which is for the s-th output channel and the t-th input
channel. Following [34], [48], this matrix is formalized as
W ∗,(m) ∈ Rp2c′×p2c to facilitate the equation vec(Y ) =
W ∗,(m)vec(X), with vec(·) representing the vectorization
function. Specifically,

W ∗ =

B1,1 · · · B1,c

...
. . .

...
Bc′,1 · · · Bc′,c

 ,

where Bs,t is a double block circulant matrix as follows
circ(Ks,t,1,:) circ(Ks,t,2,:) · · · circ(Ks,t,p,:)
circ(Ks,t,p,:) circ(Ks,t,1,:) · · · circ(Ks,t,p−1,:)

...
...

. . .
...

circ(Ks,t,2,:) circ(Ks,t,3,:) · · · circ(Ks,t,1,:)

 ,

Ks,t =

[
F ∗
s,t 0q×(p−q)

0(p−q)×q 0(p−q)×(p−q)

]
,

and circ(·) is the circular matrix of a vector (Definition 2).
We describe the properties of convolutional networks

below, which pertain to the size and number of filters.
Owing to a proof scheme similar to that for fully-connected
networks, we have deferred the corresponding proofs to
Appendix A.2.

Property 4 (Bounding Weight Matrix). Given a convolu-
tional neural network, its weight matrix W ∗,(m) satisfies,
for any constant τ > 0,

∥W ∗,(m)∥2 ≤ C2λ,

with a probability of at least (1 − 2e−τ2

)C
2

, where λ =
(
√
Q+CsK

2
s (
√
Q+ τ)) and C is the maximum number of

channels in each convolutional layer. Q is the maximum size
of all filters. Cs is a universal constant and Ks depends on
kernel weight matrices of filters.

Property 5 (Bounding Output). Given a convolutional neu-
ral network, the output y∗,(m) satisfies, for any constant
τ > 0

∥y∗,(m)∥2 ≤ (LC2λ)m∥x∥2,

with a probability of at least (1 − 2e−τ2

)C
2m, where λ =√

Q+CsK
2
s (
√
Q+τ) and Q is the maximum size q×q of all

filters. C and Cs are universal constants and Ks depends
on kernel weight matrices of filters.

Property 6 (Bounding Difference of Weight Matrices). Give
a convolutional network with its post-extraction network,
∥W (m) −W ∗,(m)∥2 satisfies, for any constant µ > 0,

∥W (m) −W ∗,(m)∥2 ≥ µ,

with a probability of at most 6Q2CeCw

√
Dw

µ where Dw is the
maximum number of extracted filters in each layer and Q
is the maximum size of all filters. Ce and Cw are universal
constants.
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Figure 4: The output variance in a neural network is bounded
by the variance of its weights and biases. The range of
the network’s output disparity post-extraction ∥y − y∗∥2 is
bounded by G and G+ η, where η = µLmλm−1∥x∥2.

4.3. Performance Dynamics

We start with exploring the performance dynamics of fα

as the retention ratio decreases, specifically focusing on the
variance V of the network outputs. The following theorem
hints that the extraction of weights with larger absolute
values causes fα to approach f0 with only a minimal
extraction ratio 1− α.

Theorem 1 (Bounding Output Variance). Given a fully
connected neural network with an input x,

V(y∗,(M)) ≤ ∥x∥22(L2N)m
M∏

m=1

(σ(m)
w )2 + L2N(σ

(M)
b )2

+ L2
M−1∑
m=1

{N(σ
(m)
b )2

M∏
l=m+1

[L2N(σ(l)
w )2]},

where σ
(m)
w and σ

(m)
b are the standard deviations of weights

and biases in the m-th layer.

Proof. For the 1-st hidden layer, we have W
∗,(1)
i x+ b

(1)
i of

linear transformation for one neuron. Given that all weights
and biases are i.i.d,

V(W ∗,(1)
i x+ b

(1)
i ) =V(

N(1)∑
j=1

W
∗,(1)
i,j xj + b

(1)
i )

=V(
N(1)∑
j=1

W
∗,(1)
i,j xj) + V(b(1)i )

=

N(1)∑
j=1

x2
jV(W

∗,(1)
i,j ) + V(b(1)i )

=(σ(1)
w )2

N(1)∑
j=1

x2
j + (σ

(1)
b )2

=(σ(1)
w )2∥x∥22 + (σ

(1)
b )2.

By the Lipschitz property of the activation function, we have

y
∗,(1)
i = ϕ(W

∗,(1)
i x+ b

(1)
i ) ≤ L(W

∗,(1)
i x+ b

(1)
i ),
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and then,

V(y∗,(1)i ) ≤V[L(W ∗,(1)
i x+ b

(1)
i )]

≤L2V(W ∗,(1)
i x+ b

(1)
i )

≤L2[(σ(1)
w )2∥x∥22 + (σ

(1)
b )2].

Hence, we have

V(y∗,(1)) =
N(1)∑
j=1

V(y∗,(1)i )

≤L2N (1)[(σ(1)
w )2∥x∥22 + (σ

(1)
b )2].

Similar for other layers,

V(y∗,(m)) ≤ L2N (m−1)[(σ(m)
w )2∥y(m−1)∥2 + (σ

(m)
b )2],

and it concludes the theorem by iterative applying the in-
equalities.

Remark: Theorem 1 establishes that the upper bound
of the output variance in a neural network is deter-
mined by the variances of its weights and biases. It
suggests a direct relationship where zeroing out larger-
magnitude weights contributes to a significant reduction
in the dynamic range of the output (smaller output vari-
ance), since altering larger-magnitude weights directly
affects the variance of the weights and, consequently,
the variance of outputs from each layer. Additionally, the
function fα approaches f0 following the extraction of
larger-magnitude weights. This occurs because, after the
extraction of those weights, the variance of the outputs
primarily depends on the variance of the biases, and the
outputs tend to converge towards the biases of the last
layer, as described by y = W (M)y(M−1) + b(M).

4.4. Theoretical Disparity Bounds

The range of the network’s output disparity ∥y − y∗∥2
is estimated in this section. Importantly, we establish a
lower bound, denoted as G, for ∥y − y∗∥2 to guarantee
the effectiveness of our proposed methodology. This lower
bound G is tailored to the specific network and its in-
puts. Additionally, we demonstrate that the upper bound for
∥y − y∗∥2 is high with a high probability, indicating that
the disparity is significant.
Disparity quantity G. For the m-th layer, the disparity
quantity G is defined as

G(m) = ∥y(m) − ϕ(W (m)y∗,(m−1))∥2,

where it serves as a lower bound of ∥y(m) − y∗,(m)∥2.
Specifically, G(m) represents the norm of the discrepancy
between the m-th layer’s output after extraction, and the
output obtained by feeding the (m − 1)-th layer output of
the original network into the extracted layer. Both lower and
upper bounds of output discrepancies for each layer m will
be established based on this measure G(m).

We utilize inductive proof to prove the case of
∥y(m) − y∗,(m)∥2, extending up to the final output layer.

This inductive process allows us to systematically assess
how alterations in each layer, due to weight extraction,
propagate through the network and ultimately manifest in
the output layer. In our proof, we omit the bias terms in
this section as it can be regarded as a variable within the
homogeneous function perspective.

4.4.1. Lower Bound of Disparity. We first establish a
lower bound of ∥y(m) − y∗,(m)∥2, which signifies a largely
inevitable error margin between y(m) and y∗,(m) across each
layer. Although extracting those weights that are opposite
numbers may lead to y(m) and y∗,(m) being identical, such
an occurrence is rare in practical applications. To further en-
hance the established disparity lower bound, we also provide
the estimated lower bound of G(m) with high probability.

Theorem 2 (Generic Lower Bound). When extracting
weights with the highest absolute values, we have

∥y(m) − y∗,(m)∥2 ≥ G(m), (1)

where G(m) ≥ µ for any constant µ > 0, with a probability
at most [Nm−1(DwCw)

m]/µ. Dw is the maximum number
of weights extracted from each layer and Cw is a universal
constant.

Proof. We first prove ∥y(m) − y∗,(m)∥2 ≥ G(m), and then
provide a lower bound of G(m).

Considering the monotonicity of ϕ, we only need
to prove each entry of the inputs of the ϕ satisfying
|W (m)

i y(m−1) − W
∗,(m)
i y∗,(m−1)| ≥ |W (m)

i y(m−1) −
W

(m)
i y∗,(m−1)| for the i-th neuron3. By extracting from

the highest positive weights of the m-th layer, we have
y(m−1) ≤ y∗,(m−1) and W

(m)
i y(m−1) ≤ W

(m)
i y∗,(m−1)4.

Then, W (m)
i y(m−1) ≤ W

(m)
i y∗,(m−1) ≤ W

∗,(m)
i y∗,(m−1)

and it naturally leads to ∥y(m) − y∗,(m)∥2 ≥ G(m). Con-
versely, with extraction from the lowest negative weights,
y(m−1) ≥ y∗,(m−1) and W

(m)
i y(m−1) ≥ W

(m)
i y∗,(m−1) ≥

W
∗,(m)
i y∗,(m−1), upholding the above inequality.

Next, we explore the lower bound of G(m). Again, by
considering the extraction from the highest positive weights,
we establish that for i ∈ [N (k)], E|ϕ(W (1)x) − y(1)| ≤
DwCw and then

E|ϕ(W (2)y∗,(1))− y(2)| ≤DwCw · E|ϕ(W (1)x)− y(1)|
≤N(DwCw)

2.

Similarly, for the m-th layer,

E|ϕ(W (m)y∗,(m−1))− y(m)| ≤ Nm−1(DwCw)
m,

where Cw is an upper bound of the extracted weight or
the sum of weights of each extracted filter. By Markov
inequality, we have G(m) ≥ µ for any constant µ > 0,
with a probability at most [Nm−1(DwCw)

m]/µ. The case
of extracting from the lowest negative weights is similar.

3. The inequality of two vectors means each pair of their elements
satisfies this inequality.

4. This holds when y(m−1) ≥ y∗,(m−1) ≥ 0, satisfied by modifying
the biases for a positive output in an equivalent activation function.
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Theorem 2 applies to both fully-connected and convo-
lutional neural networks. In convolutional networks, our
extraction targets the filter as a whole. Extracting a filter
with either the maximum or minimum sum of weights ef-
fectively mirrors the process of extracting multiple positive
or negative weights in W ∗, as the sum of these weights is
either predominantly positive or negative.

4.4.2. Upper Bound of Disparity. We start our analysis on
fully-connected networks. Theorem 3 below establishes the
upper bound of ∥y(m+1) − y∗,(m+1)∥2.

Theorem 3 (Upper Bound for Fully-connected Network).
When extracting weights with the highest absolute values,
for any constants τ > 0 and µ > 0,

∥y(m) − y∗,(m)∥2 ≤ G(m) + µLmλm−1∥x∥2, (2)

with a probability of at least (1 − 6CeCw

√
Dw

µ )(1 −
2e−τ2

)m−1, where λ =
√
N + CsK

2(
√
N + τ). Dw is the

maximum number of extracted weights in each layer and Ce

and Cw are universal constants.

Proof. First,

∥y(m) − y∗,(m)∥2
=∥y(m) − ϕ(W (m)y∗,(m−1))

+ ϕ(W (m)y∗,(m−1))− y∗,(m)∥2
≤∥y(m) − ϕ(W (m)y∗,(m−1))∥2

+ ∥ϕ(W (m)y∗,(m−1))− y∗,(m)∥2
=G(m) + ∥ϕ(W (m)y∗,(m−1))− y∗,(m)∥2.

Considering the activation function ϕ’s Lipschitz property,

∥ϕ(W (m)y∗,(m−1))− y∗,(m)∥2
=∥ϕ(W (m)y∗,(m−1))− ϕ(W ∗,(m)y∗,(m−1))∥2
≤L∥W (m)y∗,(m−1) −W ∗,(m)y∗,(m−1)∥2
=L∥(W (m) −W ∗,(m))y∗,(m−1)∥2
≤L∥W (m) −W ∗,(m)∥2∥y∗,(m−1)∥2.

By the upper bounds derived in Property 2 and 3,

L∥W (m) −W ∗,(m)∥2∥y∗,(m−1)∥2
≤Lµ(Lλ)m−1∥x∥2
=µLmλm−1∥x∥2,

where λ =
√
N + CsK

2(
√
N + τ).

Last, for calculating the probability that this inequality
holds with Property 2 and 3,

P{∥y(m) − y∗,(m)∥2 ≤ G(m) + η(m)}
=P{∥W (m) −W ∗,(m)∥ ≤ µ}

· P{∥y∗,(m−1)∥ ≤ (Lλ)m−1∥x∥2}

≥(1− 6CeCw

√
Dw

µ
)(1− 2e−τ2

)m−1.

Convolutional neural networks. For convolutional neural
networks (CNNs), a different upper bound is established by
factoring in the convolutional filters. This distinction arises
since the CORELOCKER extracts entire filters in CNNs
rather than individual weights. Note that in such case, the
weight matrix W ∗ is composed of double block circulant
matrices Bs,t, as detailed in Section 4.2.2.

Theorem 4 (Upper Bound for Convolutional Network).
When extracting weights with the highest absolute values,
for any constants τ > 0 and µ > 0,

∥y(m) − y∗,(m)∥2 ≤ G(m) + µLmλm−1∥x∥2, (3)

with a probability of at least (1 − 6Q2CeCw

√
Dw

µ )(1 −
2e−τ2

)C
2(m−1), where λ = C2[

√
Q+CsK

2
s (
√
Q+τ)]. Dw

is the maximum number of extracted filters in each layer,
C is the maximum number of filters, and Ce and Cw are
universal constants.

Proof. Similar to Theorem 3,

∥y(m) − y∗,(m)∥2
≤G(m) + L∥W (m) −W ∗,(m)∥2∥y∗,(m−1)∥2.

By Properties 5 and 6,

L∥W (m) −W ∗,(m)∥2∥y∗,(m−1)∥2
≤Lµ(Lλ)m−1∥x∥2
=µLmλm−1∥x∥2,

where λ = C2[
√
Q+ CsK

2
s (
√
Q+ τ)].

Last, for calculating the probability that this inequality
holds with Properties 5 and 6,

P{∥y(m) − y∗,(m)∥2 ≤ G(m) + η(m)}
=P{∥W (m) −W ∗,(m)∥ ≥ µ}

· P{∥y∗,(m−1)∥ ≤ (Lλ)m−1∥x∥2}

≥(1− 6Q2CeCw

√
Dw

µ
)(1− 2e−τ2

)C
2(m−1).

We contend that there is mutual reinforcement among
the established theorems. Specifically, the established upper
bounds do not scale indefinitely, in alignment with Theo-
rem 1 where fα tends towards f0 as the extraction ratio in-
creases. This is linked to the fact that

√
Dw, which is solely

related to the extraction process, increases as α decreases.
However, this increase progresses at a progressively slower
pace, consistent with the decrease in the output’s variance.

Remark: Theorems 2 to 4 establish both lower and
upper bounds of the disparity among f∗, fα, and f0.
The formal analysis demonstrates that as the extraction
ratio increases, the disparity also increases with a high
probability. This finding is further corroborated by em-
pirical results, as elaborated soon in Section 5. Overall,
Section 4 establishes a strong formal foundation for
CORELOCKER’s neuron-level usage control, ensuring
that CORELOCKER’s strategy offers strong guarantees.
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5. Experimental Evaluation

This section validates CORELOCKER with qualitative
analysis (Section 5.1) and practicality evaluation (Sec-
tion 5.2). The qualitative analysis aims to substantiate the
alignment between theoretical analysis and practicality eval-
uation in order to examine the effects of various factors
on a neural network, such as network depth (number of
hidden layers) and width (number of neurons in each hidden
layer). The practicality evaluation presents the results of
applying CORELOCKER on commonly used large networks,
e.g., ResNet-164 [37].

5.1. Qualitative Analysis

In this section, we conduct a qualitative analysis of
the CORELOCKER mechanism, aiming to complement our
theoretical analysis in Section 4.4 with real-world demon-
strations. Specifically, we compare model performance after
weight extraction with multiple models of different widths
and depths.

5.1.1. Experimental Setup. We conduct the analysis on
fully-connected neural networks (FCNs). Specifically, a total
of 80 FCNs are constructed with different structures, i.e., the
number of hidden layers is set from 4 to 13 (with a step of
1 layer), and the number of neurons in each layer is set
from 1,000 to 8,000 (with a step of 1,000 neurons). The
FCNs are trained on the MNIST dataset [49] using Adam
optimizer [50] with a learning rate of 0.001, and a batch
size of 128. Each network has 784 input neurons and 10
output neurons. After 50 epochs of training, these FCNs
achieve 98.6% test accuracy on average. The weights are
then extracted based on the ℓ1-norm indicator with a fixed
global extraction ratio of 0.002%.

5.1.2. Results. Figure 5 illustrates the analysis results of
the accuracy dropping across networks with varying depth
and width settings. Networks with larger width and depth are
more susceptible to utility loss upon extraction. For example,
after weight extraction, the performance of most networks
with more than 6 hidden layers and more than 3,000 neurons
in each layer decreases by more than 50%, and networks
with more than 9 hidden layers and more than 5,000 neurons
in each layer demonstrate very low accuracy, where most of
them drop to a mere 10%.

The analysis results further demonstrate that the model
performance after weight extraction approaches 1/N (M)

(e.g., 10% when N=4,000, M=12), which is consistent
with Theorem 1. This indicates that the performance of
fα approaches f0 even when small amounts of weights are
extracted.

It is also notable that the depth of the model has a more
pronounced impact on the decrease in accuracy compared
to its width, highlighted by the fact that introducing an
additional layer yields a similar effect to the expansion
of width by 1,000 units. Such analysis result is consistent
with our analysis in Theorem 2 and Theorem 3, where the
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Figure 5: Accuracy dropping across networks with varying
depth and width settings. Networks with greater width and
depth are more susceptible to utility loss upon extraction.

depth has an exponential effect on the disparity bounds.
Additionally, such results empirically validate the insights
of our theorems. This empirical validation offers a novel
viewpoint for analyzing the behavior of trained networks
and lays the groundwork for CORELOCKER’s neuron-level
usage control.

5.2. Practicality Evaluation

To establish that CORELOCKER is practical to protect
real-world models, we apply it to prevalent DNN architec-
tures. We first demonstrate that CORELOCKER is capable
of degrading the model performance with a low extraction
ratio, then analyze its potential capability to enable fine-
grained customization of access keys.

5.2.1. Experimental Setup. We consider several preva-
lent DNN architectures, including VGG-19 [51], DenseNet-
40 [52], and ResNet-164 [37] trained on three different
datasets. All networks are trained with a batch size of
256 for 120 epochs. Given that CORELOCKER is the first
work in its domain, we propose a random weight extraction
method as the baseline to demonstrate the effectiveness of
our model. For a fair comparison, we use the same extraction
ratio in CORELOCKER and baseline.

Our evaluation is conducted with three commonly used
datasets: Fashion-MNIST [53], CIFAR-10, and CIFAR-
100 [54]. Specifically, the Fashion-MNIST dataset com-
prises 60,000 training images and 10,000 test images. These
images are 28× 28 grayscale representations, distributed
across 10 classes. CIFAR-10/100 both have 50,000 training
images and 10,000 test images of 32 × 32, except that
CIFAR-10 includes 10 classes while CIFAR-100 has 100
classes.

5.2.2. Results. We report the top-1 test accuracy of original
models, random extraction protected models, and CORE-
LOCKER protected models with different extraction indica-
tors when the global extraction ratio is set as 0.05 in Table 1.
From the experimental results, CORELOCKER successfully
degrades all target models’ inference accuracy to a level of
random guessing (i.e., 1/N (M)). Specifically, for Fashion-
MNIST and CIFAR-10 datasets, the top-1 accuracy of all
target models post-extraction declines significantly to 10%;
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TABLE 1: Performance on different models and datasets with an extraction ratio of 0.05.

Fashion-MNIST CIFAR-10 CIFAR-100

Dense-40 ResNet-164 Vgg-19 Dense-40 ResNet-164 Vgg-19 Dense-40 ResNet-164 Vgg-19

Original 94.62% 94.88% 93.50% 94.04% 94.71% 93.52% 74.53% 76.02% 72.60%
Randomavg 91.17% 88.24% 82.30% 87.41% 85.23% 88.31% 57.52% 62.79% 61.13%
CORELOCKER1 10.01% 10.00% 9.72% 10.00% 10.01% 10.11% 1.04% 1.01% 1.02%
CORELOCKER2 10.00% 10.01% 10.00% 10.03% 10.00% 10.00% 1.00% 1.02% 1.00%
1 CORELOCKER with the ℓ1-norm as the extraction indicator.
2 CORELOCKER with the scale factors as the extraction indicator.
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Figure 6: Top-1 accuracy on different extraction ratios across three neural networks on CIFAR-10 (a) and CIFAR-100 (b).

while for CIFAR-100 which includes 100 classes, the target
models post-extraction reaches a mere 1% top-1 accuracy.
In contrast, random extraction only causes a limited accu-
racy drop. Specifically, for the DenseNet-40 and ResNet-
164 models trained on the Fashion-MNIST dataset, the
observed average accuracy reductions are 3.45% and 6.64%
respectively, taken from five trials. This analysis confirms
that CORELOCKER is capable of significant performance
degradation even with quite a low global extraction ratio,
e.g., 0.05, which indicates that CORELOCKER can provide
model usage control through neuron-level access key ex-
traction. We also provide the top-3 accuracy in Figure 7,
all target models post-extraction decline significantly to
3/N (M), i.e., all models reached an accuracy of 30.00% and
3.00% respectively on the CIFAR-10/100 datasets. further
confirming the efficacy of the proposed approach.

To further examine whether CORELOCKER can pro-
vide a fine-grained model utility protection through cus-
tomized access key extraction, we conduct more analysis
with different global extraction ratios ranging from 0.0001
to 0.05. In this experiment, we adopt the scale factors as
the extraction indicated and compare the top-1 accuracy of
CORELOCKER and random extraction, as demonstrated in
Figure 6. As shown in Figure 6a, on the CIFAR-10 dataset,
three networks, i.e., DenseNet-40, ResNet-164, and VGG-
19, exhibit a consistent decrease in model accuracy with
respect to increasing weight extraction ratios (from 0.0001
to 0.05). Similar results are exhibited on CIFAR-100 dataset
(as shown in Figure 6b). Such a consistent decrease in model
accuracy is crucial to our model access control solution,
potentially enabling customized access key generation with
respect to specific utility expectations in demo models that
are publicly accessible to unauthorized users.

Overall, our experimental results confirm that model
owners can regulate the model’s utility level by adjusting

the key extraction volume. For example, given a desired
utility (accuracy) level of 50 – 55%, a smaller extraction ratio
of 0.0050 could be performed on the ResNet model. We
postpone the detailed statistics on CORELOCKER’s capabil-
ity for granular utility control to Table 5 in Appendix B.1.
To ensure the practicality of CORELOCKER, we also ap-
ply it across other widely recognized architectures such as
transformers [55] and recurrent neural networks [56]. The
experimental results outlined in Tables 6 and 7 demonstrate
that our approach is broadly applicable, grounded in the
essential property of impact concentration within neural
networks.

Remark: Our results reaffirm that CORELOCKER can
degrade a model’s utility with fine-grained customiza-
tion concerning specific utility requirements for demo
models. In practice, the model owner can establish a
mapping between the extraction ratio and model utility
based on the theoretical bounds provided in Section 4.
Specifically, for a given model and desired utility level,
variables like neuron count (N ) and layer number (M )
are directly available as the model’s inherent attributes.
The remaining universal constants within these bounds
can be estimated using specific results from a few ran-
dom extraction ratio experiments, thus enabling a direct
mapping.

5.3. Resilience against Attacks

In addition to its effectiveness in key extraction, CORE-
LOCKER is also desired to be resilient against potential
attacks. This includes scenarios where an adversary might
identify and neutralize the weights CORELOCKER has al-
tered, or restore the model’s original accuracy through addi-
tional attacks, such as model fine-tuning with limited data. In
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Figure 7: Performance (top-3 accuracy) of CORELOCKER
on CIFAR-10 (left) and CIFAR-100 (right) datasets.

TABLE 2: Accuracy recovered by fine-tuning attack with
different fine-tuning data ratios.

Dataset Model
Fine-tuning Data

5% 10%

CIFAR-10
DenseNet-40 ▲17.23 ± 4.26 ▲23.90 ± 6.09
ResNet-164 ▲15.98 ± 8.47 ▲25.09 ± 4.11

Vgg-19 ▲15.08 ± 9.21 ▲29.52 ± 9.05

such cases, the attacker could repurpose the recovered model
for their desired uses. This section assesses the resilience of
CORELOCKER, emphasizing its effectiveness in thwarting
those advanced attacks, including fine-tuning attacks [26]
and model pruning attacks [25].
Against fine-tuning. As large models are trained on large-
scale datasets collected from different sources to achieve
satisfactory performance, the attacker might collect datasets
from the internet that are part of the actual training data
of the protected model. Such a fact raises the probability
that the attacker may adopt a fine-tuning attack against the
protected model to reconstruct the extracted weights [26].

To evaluate the resilience of CORELOCKER against fine-
tuning attacks, we consider different sizes of datasets avail-
able to the attackers, specifically 5% and 10% of the training
data utilized in target models for simplicity. We assessed
the resilience of all three models trained on the CIFAR-
10 dataset. Those models are protected by CORELOCKER
with the scale factor as the extraction indicator, with a 0.05
extraction ratio (exhibits an average accuracy of 10.01%
post-protection). The accuracy recovered (denoted as ▲) by
the attacker is demonstrated in Table 2. The table establishes
a general trend: the accuracy recovery tends to increase
when a larger portion of the dataset is employed for fine-
tuning. These results are based on three trials, wherein data
is randomly resampled for each trial. Due to this random
selection process, and the fact that certain data may have a
more substantial effect on the fine-tuning of the model than
others, the resulting variances can be explained. Overall,
our method demonstrates sustained resilience even when
subjected to fine-tuning with 10% of the training data, a
scenario that is often considered unrealistic in most practical
situations.
Model pruning attack. The model pruning attack is an
advanced attack known as the most effective attack against
encryption-based or noise-based model protection meth-
ods [21], [25]. It operates by pruning the parameters that
are encrypted or corrupted to restore the model performance,
assuming that these protection methods randomly encrypt or

TABLE 3: Accuracy recovered by pruning attack with dif-
ferent pruning ratios.

Dataset Model
Pruning Ratio

20% 40%

Fashion-MNIST
DenseNet-40 ▲0.00 ± 0.34 ▲1.04 ± 0.81
ResNet-164 ▲0.00 ± 0.20 ▲0.52 ± 0.82

Vgg-19 ▲0.00 ± 0.07 ▲0.00 ± 0.42

corrupt some of the parameters to degrade the model per-
formance. We follow the same attack setup as [21], and test
the resilience of CORELOCKER using up to 40% pruning
ratio. As shown in Table 3, the evaluated models are trained
on the Fashion-MNIST dataset, protected by CORELOCKER
with the scale factor as the extraction indicator, with a 0.05
extraction ratio (models exhibit an average of 10.00% post-
protection). Clearly, even when we adopt a 40% pruning
ratio, our methodology exhibits a completely robust defense
against such attacks, i.e., less than 1% accuracy recovery
on average. This further elevates the significance of our
methodology, providing the insight that our strategy does
not merely change the model “superficially” but instead
enacts a fundamental disruption. The reason for this is the
important parameters have been identified and have already
been excluded by our algorithm, and such an attack will
not be effective to ours. Such resilience is not just an
incremental improvement but a paradigm shift in ensuring
model utility protection.

6. Related Work

Model IP protection. Model IP protection aims to protect
the ownership of intellectual property of the model from be-
ing abused. As discussed earlier, existing passive model pro-
tection approaches like watermarking [12], [15], [57] may
have limitations in preventing unauthorized usage after the
model’s exposure. In response, proactive protection strate-
gies such as model encryption have been introduced. They
typically necessitate decoding the model at runtime for infer-
ence, which may still leave the decoded model susceptible
to attacks [58]. Specifically, Chakraborty et al. [38] leverage
secure hardware support to propose a key-dependent back-
propagation algorithm for training a DNN with obscured
weight space. This obfuscation ensures that only authorized
users with access to trusted hardware and an embedded
key can use the model effectively; unauthorized extraction
and deployment of the model by attackers, particularly on
different devices, lead to a significant decline in model
accuracy. Besides the reliance of hardware modifications,
this technique may fall short in universal applicability to pre-
trained models. Similarly, Fan et al. [59] propose a method
to protect the model IP by integrating a passport layer into
the deep neural network, specifically designed to counter
ambiguity attacks. Other approaches integrate a secret key
into the training data during prepossessing and train models
to operate only with key-preprocessed inputs [19], [20].
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TABLE 4: Configuration comparison of existing methods.

Data
Access

Additional
Training

Hardware
Support

Chakraborty et al. [38]    
Chen et al. [20]   #
Fan et al. [59]   #
Pyone et al. [19]   #
Xue et al. [21]  # #
Zhou et al. [22]  # #
CORELOCKER (Ours) # # #
*  (or #) refers to require (or do not require) the condition.

Recent research seeks to mitigate unauthorized access
by integrating adversarial perturbations [21], [22]. The chal-
lenge of deploying such approaches lies in the restricted
availability of secure memory, necessitating that only a lim-
ited number of modifications can be made. As such, existing
approaches either utilize the original testing data to create
perturbations [21], or set perturbations as an optimization
objective using reinforcement learning [22].

As a summary, Table 4 lists the comparison between
the configurations of our method to those of existing model
IP protection strategies, in terms of data access, additional
training, and hardware support. CORELOCKER sets itself
apart from other methods that typically require original data
for encryption or adversarial perturbation generation [19]–
[22], [38], [59], as well as those requiring additional train-
ing [19], [20] or hardware support [38]. It is also worth
highlighting the efficiency of CORELOCKER in dynamic
scenarios where the access key needs to be regenerated
when the model undergoes significant updates. Unlike ex-
isting approaches that typically rely on expensive retraining
or fine-tuning, CORELOCKER’s lightweight and data-free
nature minimizes the overhead for regeneration.
Validation of lottery ticket hypothesis. We draw insight
from the proof frameworks that establish the existence
of “lottery tickets” to obtain the essential properties of
neural networks. The Lottery Ticket Hypothesis posits the
intriguing presence of “winning ticket” sub-networks within
a randomly initialized network, which – when trained in
isolation – can reach or exceed the original network’s test
accuracy. This hypothesis was first proposed in [60] and has
since attracted great interest. Subsequent research endeavors,
such as those by Zhou et al. [61] and Ramanujan et al.
[62], have theoretically corroborated the existence of these
sub-networks, demonstrating their potential to perform well
without the conventional training of weights. More recent
findings by Zhang et al. [63] suggest that sub-networks
capable of high performance can be identified within pre-
trained models.
Neural network pruning. Neural network pruning, a
widely utilized technique for model compression, enables
the deployment of models on devices with constrained re-
sources. Over time, numerous pruning methods have been
proposed, demonstrating that it’s feasible to decrease the pa-
rameter count in neural network models by as much as 90%
while incurring only a minimal loss in performance [33],
[35], [36]. Works by LeCun et al. [33] and Hassibi et
al. [35] studied the efficiency of network pruning based on

second derivative conditions. Other lines of network pruning
focus on the magnitude of the weights [40]. Other pruning
techniques remove neurons with zero activation [64], or
other measures of redundancy [65]. Recent methodologies in
the field have been promoting the pruning of entire convo-
lutional channels to achieve more significant performance
enhancements [44], [66]–[68]. These pruning techniques
provide further insight, that the performance of a neural
network is largely reliant on a crucial subset of weights.

7. Conclusion

In this paper, CORELOCKER emerges as a pioneering
solution for neuron-level model usage control in neural
networks. It stands out for its practicality, being lightweight,
data-agnostic, and retraining-free, and efficiently manages
access key extraction. The method is underpinned by a
solid theoretical analysis that introduces a formal frame-
work and crucial boundaries for model usage control. Em-
pirically, CORELOCKER demonstrates effectiveness in de-
grading model performance and exhibits robustness against
advanced adversarial strategies like fine-tuning and pruning
attacks. This research marks a significant advancement in
neural network model protection and usage control.
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Appendix A.
Supporting Lemmas & Supplementary Proofs

In this section, we present the lemmas required to prove
the primary theorems in Section 4.

A.1. Supporting Definitions and Lemmas

The circular matrix of a vector is given as follows.

Definition 2. For a vector a = (a1, · · · , an)T ∈ Rn, its
circular matrix is

circ(a) =


a1 a2 · · · an
an a1 · · · an−1

...
...

. . .
...

a2 a3 · · · a1

 .

The following lemma is to estimate the bound of a
random matrix norm, where s1(·) is the biggest singular
value and we use ∥Ax∥2 = s1(A)∥x∥2 to estimate the norm
of a random matrix, e.g., ∥W ∗y∗∥2.

Lemma 1 (Singular value bound of sub-Gaussian random
matrices [69]). Given a matrix A ∈ Rm×n whose rows Ai

are independent, mean zero, sub-gaussian isotropic random
vectors in Rn, for any τ ≥ 0,

P
{
s1(A) ≤

√
m+ CsK

2
s (
√
n+ τ)

}
≥ 1− 2e−τ2

,

where Cs is a universal constant and Ks = maxi∥Ai∥2.

The following lemma about order statistics is utilized to
estimate each entry of E∥W −W ∗∥2.
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Lemma 2 (Order statistics [70]). Given n i.i.d.5 random
variables U1, . . . , Un ∼ U(−a, a), we have

EU2
(r) = a2

(r + 1)r

(n+ 2)(n+ 1)
,

EU4
(r) = a4

(r + 3)(r + 2)(r + 1)r

(n+ 4)(n+ 3)(n+ 2)(n+ 1)
,

where 1 ≤ r ≤ n is a constant and U(1), . . . , U(n) are order
statistics of U1, . . . , Un.

Note that even though the above Lemma 2 is for uniform
distribution, it provides an upper bound for the weights
following a sub-gaussian distribution when considering r
is close to n in this work.

The next lemma estimates the upper bound of a random
matrix’s norm based on its expected value, which is used to
estimate E∥W −W ∗∥2 by its entry’s expected value.

Lemma 3 (Expected norm of a random matrix [71]). Let
B be a random matrix whose entries Bi,j are independent
mean zero random variables with finite moment. Then

E∥B∥2 ≤Ce[max
i

(
∑
j

EB2
i,j)

1
2

+max
j

(
∑
i

EB2
i,j)

1
2 + (

∑
i,j

EB4
i,j)

1
4 ],

where Ce is a universal positive constant.

Lemma 4 (Theorem 6 in [48]). Let ω = e
2πi
p , with i =

√
−1

and denote by S the p×p matrix that embodies the discrete
Fourier transform, the weight matrix W ∗ in a convolutional
layer can be estimated by

S =

ω
1 · · · ωp

...
. . .

...
ωp · · · ωp2

 .

Given a tensor F ∈ Rc×c×q×q, we denote K ∈ Rc×c×p×p

and W ∗ ∈ Rcp2×cp2

as the matrix encoding the linear
transformation computed by the convolutional layer param-
eterized by K, as defined in Section 4.2.2. Let P (u,v) be the
c×c matrix such that the (s, t)-th element of P (u,v) is equal
to the (u, v)-th element of STKs,tS, u, v ∈ [p], s, t ∈ [c],
or equivalently P

(u,v)
s,t = (STKs,tS)u,v. Then

∥W ∗∥2 = max
u,v∈[p]

∥P (u,v)∥2.

A.2. Supplementary Proofs on Properties of Con-
volutional Networks

The following part proves an upper bound of ∥W ∗∥2 for
convolutional networks.

5. Independent and identically distributed.

A.2.1. Proof for Property 4.

Proof. We have ∥W ∗∥2 = maxu,v∈[p]{∥P (u,v)∥2} by
Lemma 4, and

P
(u,v)
s,t = (STKs,tS)u,v =

∑
i,j∈[q]

ωui+vjKs,t,i,j .

Next, ∑
i,j∈[q]

ωui+vjKs,t,i,j ≤∥Ks,t∥2 = ∥Fs,t∥2

≤√
q + CsK

2
s (
√
q + τ).

Then by Lemma 1 we have

∥W ∗∥2 = max
u,v∈[p]

{∥P (u,v)∥2}

≤ max
u,v∈[p]

{
∑

s∈[c′],t∈[c]

∥P (u,v)
s,t ∥2}

≤ max
u,v∈[p]

{
cc′ ∥Fs,t∥2

}
≤cc′[

√
q + CsK

2
s (
√
q + τ)]

≤C2[
√

Q+ CsK
2
s (
√

Q+ τ)].

Lastly, we calculate the probability when this inequality
holds.

P{∥W ∗∥2 ≤ C2[
√

Q+ CsK
2
s (
√

Q+ τ)]}
=

∑
s∈[c′],s∈[c]

P{∥Fs,t∥2 ≤ √
q + CsK

2
s (
√
q + τ)}

=(1− 2e−τ2

)cc
′

≥(1− 2e−τ2

)C
2

.

Then, we can approximate the upper bounds of output for
convolutional networks.

A.2.2. Proof for Property 5.

Proof. By Lipschiz constant of the activation function and
the upper bound of the transformed convolutional weight
matrix by Property 4,

∥y∗,(m)∥2
=∥ϕ(W ∗,(m)y

∗,(m−1)
k )∥2

=∥ϕ(W ∗,(m)y
∗,(m−1)
k )− ϕ(0)∥2

≤L∥W ∗,(m)y∗,(m−1) − 0∥2
=L∥W ∗,(m)y∗,(m−1)∥2
≤Lcc′λ∥y∗,(m−1)∥2
≤(Lcc′λ)2∥y∗(m−2)∥2
· · ·

≤(Lcc′λ)m∥x∥2
≤(LC2λ)m∥x∥2,
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where λ =
√
q + CsK

2
s (
√
q + τ). Then we calculate the

probability that this inequality holds,

P{∥y∗,(m)∥2 ≤ (LC2λ)m∥x∥2}

=

m∏
k=1

P
{
∥W ∗∥2 ≤ C2λ

}
≥(1− 2e−τ2

)C
2m.

Next, we give the upper bound for ∥W (m) −W ∗,(m)∥2

A.2.3. Proof for Property 6.

Proof. The non-zero filters F ∗ composing of W (m) −
W ∗,(m) are {F ∗

s,t | (s, t) ∈ I}. For any F ∗
s,t by Lemma 2,

E|
∑

i,j∈[q]

F ∗
s,t,i,j |2 ≤E|

∑
i,j∈[q]

F ∗
sD,tD,i,j |2

=q2C2
w

(D + 1)D

(D + 2)(D + 1)

≤q2C2
w

(2D)2

D2
= 4q2C2

w

and

E|
∑

i,j∈[q]

F ∗
s,t,i,j |4 ≤E|

∑
i,j∈[q]

F ∗
sD,tD,i,j |2

=q4C4
w

(D + 3)(D + 2)(D + 1)D

(D + 4)(D + 3)(D + 2)(D + 1)

≤q4C4
w

(2D)4

D4

=16q4C4
w.

Similar to Property 3 by Lemma 3, let Dw be the maximum
number of the extracted filters, we gave

E ∥W −W ∗∥2 =E max
u,v∈[p]

{
∑

(s,t)∈I,i,j∈[q]

∥Fs,t,i,j∥2}

≤6q2CeCw

√
Dw

By Markov’s inequality, for all µ ≥ 0,

P{∥W −W ∗∥2 ≥ µ} ≤E∥W −W ∗∥2
µ

≤6q2CeCw

√
Dw

µ

≤6Q2CeCw

√
Dw

µ
.

Appendix B.
Additional Experiments and Statistics

B.1. Granular Utility Control

TABLE 5: Granular utility control (5% granularity) on
ResNet-164 and DenseNet-40 trained on CIFAR-100.

Extraction
Ratio

ResNet-164 DenseNet-40

Utility Range (%) Utility Range (%)

0.0005 73.3% 70 – 75 70.2% 70 – 75
0.0010 71.6% 70 – 75 66.3% 65 – 70
0.0015 69.3% 65 – 70 63.5% 60 – 65
0.0020 66.6% 65 – 70 60.0% 60 – 65
0.0025 63.1% 60 – 65 55.9% 55 – 60
0.0030 61.3% 60 – 65 53.7% 50 – 55
0.0035 59.7% 55 – 60 51.5% 50 – 55
0.0040 56.3% 55 – 60 47.4% 45 – 50
0.0045 53.2% 50 – 55 43.6% 40 – 45
0.0050 51.9% 50 – 55 43.1% 40 – 45
0.0055 45.9% 45 – 50 39.3% 35 – 40
0.0060 43.9% 40 – 45 36.7% 35 – 40
0.0065 41.0% 40 – 45 34.1% 30 – 35
0.0070 35.7% 35 – 40 29.3% 25 – 30
0.0075 32.0% 30 – 35 27.2% 25 – 30
0.0080 32.2% 30 – 35 25.2% 25 – 30
0.0085 28.7% 25 – 30 25.0% 20 – 25
0.0090 27.9% 25 – 30 20.8% 20 – 25
0.0095 26.7% 25 – 30 19.5% 15 – 20
0.0100 24.4% 20 – 25 19.5% 15 – 20

B.2. Compatibility with Other Model Architectures

TABLE 6: CORELOCKER’s access control capability on
models with other popular architectures (BERT, CNN-
LSTM, Vision Transformer). With a global extraction ratio
of 0.05, all settings reached an expected utility level for
access control (Acc ≈ 1/Nclass) post-extraction. Results
confirm that CORELOCKER is model-independent, as it is
built on the fundamental characteristic of impact concentra-
tion in neural networks.

Model Architecture Dataset # Class Original CORELOCKER

BERT Transformer AG News 4 87.2% 25.3%
CNNLSTM CNN, RNN CIFAR-10 10 81.1% 10.0%

ViT Transformer CIFAR-100 100 81.4% 1.4%

TABLE 7: Granular utility control on Vision Transformer
(ViT) trained on CIFAR-100 dataset. Model owners may
regulate the model’s utility level by adjusting the key ex-
traction volume.

Extraction Ratio Utility (Accuracy) Utility Range (%)

0.0000 81.4% -
0.0050 74.2% 70 – 80
0.0100 65.0% 60 – 70
0.0150 58.1% 50 – 60
0.0200 41.8% 40 – 50

17



Appendix C.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

C.1. Summary

The paper introduces CORELOCKER, a novel method for
protecting deep neural network models from unauthorized
use. It extracts a critical subset of the model’s weights, effec-
tively serving as an access key that limits full functionality
to authorized users. The proposed methods are tested across
various neural architectures, demonstrating its effectiveness
in significantly reducing unauthorized performance while
ensuring easy restoration for legitimate users.

C.2. Scientific Contributions

• Provides a Valuable Step Forward in an Established
Field

C.3. Reasons for Acceptance

• This paper provides a valuable step forward in an es-
tablished field. The paper proposes a novel problem
setting in AI model usage control, and addresses it
with a simple yet effective method.
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