Convex Hull Approximation for Activation Functions

ZHONGKUI MA*, The University of Queensland, Australia
ZIHAN WANG®, The University of Queensland and CSIRO’s Data61, Australia
GUANGDONG BAIT , The University of Queensland, Australia

The wide adoption of deep learning in safety-critical domains has driven the need for formally verifying
the robustness of neural networks. A critical challenge in this endeavor lies in addressing the inherent non-
linearity of activation functions. The convex hull of the activation function has emerged as a promising
solution, as it effectively tightens variable ranges and provides multi-neuron constraints, which together
enhance verification precision. Given that constructing exact convex hulls is computationally expensive and
even infeasible in most cases, existing research has focused on over-approximating them. Several ad-hoc
methods have been devised for specific functions such as ReLU and Sigmoid. Nonetheless, there remains a
substantial gap in developing broadly applicable approaches for general activation functions.

In this work, we propose WRAACT, an approach to efficiently constructing tight over-approximations for
activation function hulls. Its core idea is to introduce linear constraints to smooth out the fluctuations in the
target function, by leveraging double-linear-piece (DLP) functions to simplify the local geometry. In this way,
the problem is reduced to over-approximating DLP functions, which can be efficiently handled. We evaluate
WRAACT against SBLM+PDDM, the state-of-the-art (SOTA) multi-neuron over-approximation method based
on decomposing functions into segments. WRAACT outperforms it on commonly-used functions like Sigmoid,
Tanh, and MaxPool, offering superior efficiency (average 400X faster) and precision (average 150X) while
constructing fewer constraints (average 50% reduction). It can complete the computation of up to 8 input
dimensions in 10 seconds. We also integrate WRAACT into a neural network verifier to evaluate its capability
in verification tasks. On 100 benchmark samples, it significantly enhances the single-neuron verification
from under 10 to over 40, and outperforms the multi-neuron verifier PRIMA with up to additional 20 verified
samples. On large networks like ResNets with 22k neurons, it can complete the verification of one sample
within one minute.

CCS Concepts: » Security and privacy — Logic and verification; - Computing methodologies — Neural
networks.

Additional Key Words and Phrases: Robustness, Neural Networks, Convexity, Polytope

ACM Reference Format:
Zhongkui Ma, Zihan Wang, and Guangdong Bai. 2025. Convex Hull Approximation for Activation Functions.
Proc. ACM Program. Lang. 9, OOPSLA2, Article 308 (October 2025), 33 pages. https://doi.org/10.1145/3763086

1 Introduction

Deep neural networks (DNNs) have achieved remarkable success in a range of fields, such as
image recognition [Krizhevsky et al. 2012], game playing [Silver et al. 2016], and natural language
processing [Hinton et al. 2012; Sutskever et al. 2014]. These models present an appealing alternative

“Equal contribution.
TCorresponding author.

Authors’ Contact Information: Zhongkui Ma, zhongkui.ma@ugq.edu.au, The University of Queensland, Brisbane, Queensland,
Australia; Zihan Wang, zihan. wang@ugq.edu.au, The University of Queensland and CSIRO’s Data61, Brisbane, Queensland,
Australia; Guangdong Bai, baiguangdong@gmail.com, The University of Queensland, Brisbane, Queensland, Australia.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/10-ART308

https://doi.org/10.1145/3763086

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 308. Publication date: October 2025.

https://orcid.org/0000-0002-2392-3751
https://orcid.org/0000-0002-6536-2948
https://orcid.org/0000-0002-6390-9890
https://doi.org/10.1145/3763086
https://orcid.org/0000-0002-2392-3751
https://orcid.org/0000-0002-6536-2948
https://orcid.org/0000-0002-6390-9890
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3763086

308:2 Zhongkui Ma, Zihan Wang, and Guangdong Bai

to handcrafted software, offering ease of development alongside excellent performance [Wang
et al. 2025, 2024]. However, despite their impressive capabilities, their application in safety-critical
contexts has been limited. This is mainly due to their “black box” nature that makes the decision-
making process opaque and raises concerns of unexpected behaviors [Feng et al. 2024]. Indeed,
DNN s can be misled by imperceptible perturbations into producing wrong classifications [Cao et al.
2021; Carlini and Wagner 2017; Ma et al. 2023], or even generating harmful outputs [Yang et al.
2024; Yu et al. 2024].

As neural network components in safety-critical systems are set to expand dramatically, verifying
their robustness is becoming increasingly indispensable. Some advancements have been achieved
with approaches such as bound propagation [Singh et al. 2019b; Weng et al. 2018; Zhang et al. 2018]
and linear programming [Ma et al. 2024; Miller et al. 2022; Singh et al. 2019a]. They all involve
linear constraints to over-approximate non-linear functions, and two types of constraints have
been widely used [Li et al. 2023; Meng et al. 2022], i.e., single-neuron constraints[Ehlers 2017; Katz
et al. 2019; Singh et al. 2019b; Weng et al. 2018; Zhang et al. 2018], which involve a single activation
function, and multi-neuron constraints [Ma 2023; Ma et al. 2024; Miiller et al. 2022; Salman et al.
2019; Singh et al. 2019a; Tjandraatmadja et al. 2020], which take into account the correlation among
multiple activation functions. Constructing single-neuron constraints is straightforward in the
space of a single input and a single output, but it often leads to lower precision in the verification
due to the absence of constrained correlation among multiple variables. Multi-neuron constraints
enhance the verification precision by capturing non-trivial correlations among multiple variables.
Nonetheless, constructing multi-neuron constraints is costly due to the complex architecture of
networks, particularly in high-dimensional space. State-of-the-art approaches [Ma et al. 2024;
Miiller et al. 2022; Singh et al. 2019a] typically construct linear constraints for each layer, which
involve its inputs and outputs. Since each layer takes the outputs from the preceding layer as inputs,
these constraints cover neurons in adjacent layers.

Several studies have been conducted on the effective construction of multi-neuron constraints [Ma
et al. 2024; Miiller et al. 2022; Singh et al. 2019a; Tjandraatmadja et al. 2020], by analyzing neurons
within each layer. Since processing one layer with many neurons is still expensive, the neuron
grouping strategy, which partitions neurons within the same layer, is further proposed [Singh
et al. 2019a] to avoid the cost of handling high-dimensional multi-neuron cases. These approaches
have proven effective for piecewise linear activation functions, such as the ReLU function, given
that their piecewise linearity facilitates reducing the number of required linear constraints to
enhance verification efficiency. In practice, however, neural networks often involve a broader
variety of non-linear activation functions, which can be roughly categorized into S-shaped functions
(typically Sigmoid and Tanh) and ReLU-like functions (typically ELU [Clevert et al. 2016] and
leaky ReLU [Maas et al. 2013]). These functions lack simple geometry properties like piecewise
linearity, making over-approximating their convex hulls challenging. This challenge has hindered
the development of generally applicable approaches to constructing tight hull over-approximations
of activation functions, and thus limits the broad applicability of neural network verification in
practice.

Our work. In this work, we explore a generally applicable over-approximation of the convex
hulls of activation functions, referred to as function hulls. We introduce an approach named
WRAACT (wrapping activation functions). Given an activation function ¢ and a bounded convex
polytope X as the input domain, it constructs an over-approximation of Conv((X, Y)) = Conv((X,
0(X))), where (X, Y) represents the the set of input-output pairs of ¢. The core idea of WRAACT is
to leverage a divide-and-conquer strategy to handle the target function from local to global. It starts
by segmenting the target function into local pieces such that each exhibits minimal fluctuation.
For each pair of adjacent local pieces, it constructs a double-linear-piece (DLP) function to closely

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 308. Publication date: October 2025.

Convex Hull Approximation for Activation Functions 308:3

approximate each piece while capturing the changes between them. These DLP functions are then
over-approximated using an efficient algorithm to obtain constraints of their upper and lower
bounds. The constraints are expanded and integrated across the global input domain, yielding an
over-approximation of the target function over its entire domain.

To illustrate WRAACT’s solution, consider an S-shaped function Y = o(X). WRAACT segments
Y into three pieces. The first piece approaches its lower asymptote, the second piece depicts its
main increase around the origin, and the third approaches its upper asymptote. To address the
non-linearity of these three pieces as a whole, one DLP function, which is either locally convex or
concave, is constructed to approach a pair of adjacent pieces. For the first two pieces, WRAACT
constructs a convex DLP function as its upper bound, i.e., 5(X) > o(X), and for the last two pieces,
a concave DLP function is as its lower bound, i.e., 6(X) < o(X). These DLP functions are used to
derive constraints that over-approximate the target function.

The geometry properties of DLP functions greatly contribute to WRAACT’s precision and effi-
ciency. For precision, the DLP functions can well depict the local geometry of the target function
based on its local pieces. Introducing them enhances the representation of complex nonlinear
behaviors using linear constraints and thus facilitates the construction of precise multi-neuron
constraints. In terms of efficiency, the DLP functions’ feature of two linear pieces (similar to the
ReLU hull [Ma et al. 2024]) facilitates an efficient construction of their over-approximation. When
expanding to the global input domain, the constraints from the over-approximation of the DLP func-
tions naturally become constraints of the target function if the constraints do not cross the target
function. Such constraints can be efficiently identified using coefficient signs of the constraints.

We conduct a comprehensive evaluation of WRAAcT, with both intrinsic and extrinsic analyses.
Our evaluation covers almost all extensively-used activation functions, including Sigmoid, Tanh,
leaky ReLU [Maas et al. 2013], ELU [Hendrycks and Gimpel 2023], and MaxPool. The intrinsic eval-
uation focuses on four metrics that have been commonly used for function hull over-approximation,
i.e., precision, efficiency, constraint complexity, and scalability [Ma et al. 2024; Miiller et al. 2022]. It
is applied to Sigmoid, Tanh, and MaxPool, given their complexity and representativeness in terms
of geometry. We compare WRAAcT with SBLM+PDDM [Miiller et al. 2022], the SOTA multi-neuron
over-approximation method. With input dimensions from 2 to 4, WRAACT consistently achieves an
average 150X tighter over-approximation than SBLM+PDDM and an average 400X faster computa-
tion than SBLM+PDDM. It constructs succinct over-approximations with fewer constraints, which
is an average of 50% by SBLM+PDDM. WRAACT remains salable with up to 8 input dimensions, in
which the computation is completed within 10 seconds.

The extrinsic evaluation focuses on the performance of WRAACT in local robustness verification.
To this end, we implement a verifier integrating WRAACT for generating multi-neuron constraints,
which provides non-trivial constraints that take into consideration correlated variables among
multiple activation functions. We evaluate the verifier on two fully-connected networks and two
convolutional networks on the MNIST and CIFAR10 datasets. It is benchmarked in comparison with
two single-neuron verifiers, DeepPoly [Singh et al. 2019b] and CROWN [Zhang et al. 2018], and
the SOTA multi-neuron verifier PRIMA [Miiller et al. 2022], in terms of the number of successfully
verified samples out of 100 benchmark samples, and the runtime of verification. The results demon-
strate that WRAACT significantly outperforms single-neuron verifiers with an average of 30 and up
to 40 samples and PRIMA with an average of an extra 20 samples and a speed of 4X-10X faster.
Notably, the WrRAAcT-based verifier takes a further step in verifying real-world neural networks. In
residual neural networks with over 22k neurons, it can verify a sample within one minute, showing
its practicality and scalability.

Contributions. The main contributions of this work are summarized as follows.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 308. Publication date: October 2025.

308:4 Zhongkui Ma, Zihan Wang, and Guangdong Bai

e A valuable step forward in the generally applicable framework of over-approximating
the convex hull of activation functions. We propose an approach to over-approximating
function hulls of non-linear activation functions with high-dimensional dependent variables
by taking advantage of the tractable properties of DLP functions. This approach represents a
significant advancement towards establishing function hull over-approximations of general
activation functions, the major open problem in neural network verification.

e A solid theoretical foundation on the function hulls of activation functions. We analyze
the function hull of the DLP function by proving the equivalence of the topological properties
between the DLP and ReLU functions from the view of linear transformation and demonstrate
the soundness of our approach. With strategies designed for ReLU-like and S-shaped functions,
WRAACT can handle widely-used activation functions, including Sigmoid, Tanh, ELU, leaky
RelLU, and MaxPool.

e An evaluation with a range of activation functions and network architectures. We
integrate WRAACT into a neural network verifier and test it on various activation functions,
including Sigmoid, Tanh, leaky ReLU, ELU, and MaxPool, and a broad range of network
architectures, e.g., fully-connected, convolutional, and residual networks. The results show
that WRAAcT-based verifier is significantly more precise and efficient than SOTA verifiers and
scales to large residual networks.

Notation. This paper adheres to the following notation conventions: normal letters are for repre-
senting individual scalar variables such as a, b, ¢, x and y; bold letters for column vectors like x
and b, where b, denotes the subvector consisting of the first n entries, and b, denotes the n-th
scalar entry of b; bold capital letters for matrices like W and A, where A; is the i-th row vector
and A;; is the j-th entry in the i-th row; I, is an n-dimensional identity matrix; 0,,x, isan m X n
all-zero matrix; 0,, is an n-dimensional all-zero column vector; 1,,x, is an m X n all-one matrix;
1, is an n-dimensional all-one column vector; calligraphic capital letters for point sets like M, X,
Y; script capital letter .Z for linear transformation; (x1, xs, - - - , x,,)-space denotes a specific space
with variable x1, x5, . .., X; m..n to represent {m < i < n | i € Z} for simple notation. The operator
Conv(-) is used to get the convex hull of the given point set. When a set of linear constraints
represents polytopes (high-dimensional polyhedra), the intersection of polytopes is the union of
their linear constraints. For instance, the intersection of {x; > 0} and {x, > 0} is {x; > 0, x, > 0}.
f’ represents the derivative function of a function f.

2 Preliminaries

This section presents the formal definitions relevant to neural network verification using linear
constraints. While we focus on fully connected networks for brevity, convolutional networks are
similar due to their mathematical equivalence in terms of linear transformation.

2.1 Neural Networks with Linear Constraints

2.1.1 Neural Network Verification. Neural network verification seeks to confirm that a neural
network satisfies a specified output property under given input conditions, represented by linear
constraints. Local robustness verification is a common and critical property that needs to be guaran-
teed in many scenarios, especially in classification tasks, which is the focus of this work. Formally,
for a neural network y = f(x), given an input x with a perturbation radius € € R, the verification
aims to ensure that Vx’ € {x" | [|x" — x||, < €}, f(x") = f(x), where p = oo (the £, norm) is a
common choice because it allows each input dimension to be perturbed independently, providing a
sufficiently strong condition.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 308. Publication date: October 2025.

Convex Hull Approximation for Activation Functions 308:5

Soundness and completeness. Verification methodologies can be categorized into two main types,
exact and approximate. Exact approaches determine the precise output range using satisfiability
modulo theories (SMT) or mixed integer linear programming (MILP). However, these methods
are inefficient when applied to large-scale neural networks. In contrast, approximate approaches
determine variable ranges using linear constraints, rendering them efficient and scalable. While exact
approaches offer complete verification, which yields merely true positive and true negative samples
and provides exactly “yes” or “no” responses to the verified property, approximate approaches deliver
sound but incomplete verification, furnishing only partial true positive samples and responding
with “yes” or “undecidable” to the verified property. Note that an approximate approach can be
combined with the branch-and-bound (BaB) strategy to achieve complete verification [Bunel et al.
2020, 2018] for piecewise linear functions (such as ReLU and MaxPool) due to the finite number of
linear pieces that can be verified. Nevertheless, the BaB strategy cannot branch a general activation
function into a finite number of exactly verifiable linear pieces and cannot numerically bound the
exact output ranges, implying that no universal complete verification exists.

2.1.2 Single-neuron and Multi-neuron Constraints. Our discussion focuses on a hidden layer of
a neural network, y*) = o(y~V), where y) and y""1 are respectively the output and input
vector of the i-th hidden layer and o is the activation function. A hidden layer can be decomposed
into a linear and a non-linear operation as x(?) = W)y~ 4 p() and y) = 5(x?), where x?)
and y¥) are pre- and post-activated variables, W) and b(") are weight and bias'.

Single-neuron constraints. The common approach is to construct linear constraints involving
x;j and y; in a two-dimensional (x;, y;)-space, where x; is the pre-activated variable and y; is the
output of the j-th neuron, omitting the layer indexing. The linear constraints obtained in this way
are called single-neuron constraints because these constraints only involve the input and output
variables of one neuron (examples shown in Figure 1). These linear constraints are commonly used
in bound-propagation-based approaches due to their simplicity [Singh et al. 2018, 2019b; Weng
et al. 2018; Zhang et al. 2018].

Multi-neuron constraints. Multi-neuron constraints involve multiple neuron variables simul-
taneously. This study defines multi-neuron constraints as linear constraints involving multiple
output variables y; and pre-activation variables x;. Specifically, a single-neuron constraint has the
form ax; + by; + ¢ > 0, where a, b, c are constants. In contrast, a multi-neuron constraint has the
forma’™x+b "y + c > 0, where a and b are constant vectors, and ¢ is a scalar.

2.2 Convex Polytope and Convex Hull
2.2.1 Convex Polytope. A convex polytope is, geometrically, the intersection of halfspaces, where

a halfspace is a linear constraint that divides the space into two. The H-representation (halfspace
representation) of a convex polytope is defined as follows.

DEFINITION 1 (H-REPRESENTATION OF POLYTOPE). A convex polytope is a set X C R" defined by a
set of m halfspaces, X = {x e R* | A;jx+b; > 0,i € 1..m}, where A; € R" is a constant vector, and
b; € R is a scalar.

In this work, we consider the bounded convex polytope, which can be viewed as a convex set
defined by finite vertices, also known as the V-representation (vertex representation), defined as
follows.

DEFINITION 2 (V-REPRESENTATION OF BOUNDED PoryTOPE). A bounded convex polytope is a
set X C R" defined by a set of m points, V C R" (|'V| = m), called vertices of X, such that
X={X" Awi | X' A =10, € V,i € 1.m}, where A; € R is a non-negative constant.

1A scalar function outputs a vector (or a point set) when taking a vector (or a point set) as input.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 308. Publication date: October 2025.

308:6 Zhongkui Ma, Zihan Wang, and Guangdong Bai

Y

= @ =Y + f)

™

N

(a) y = tanh(x) (x € [—4,2]). (b) y = ELU(x) (x € [—4,1]).

Fig. 1. Single-neuron constraints of Tanh and ELU (more cases and details in Table 3). The hatched area
is an over-approximation of the function hull determined by linear constraints, which are represented by
dotted lines. The single-neuron constraints only consider the activation function shape in the 2-dimensional
input-output space.

2.2.2 Convex Hull. The convex hull is the minimal convex set that contains a given set of points.
Non-piecewise-linear functions, such as Sigmoid and Tanh, cannot be exactly represented within a
convex polytope with flat faces because their non-linear nature necessitates a non-linear analytical
representation. We define the convex hull as follows to maintain clarity and applicability across
various contexts.

DEFINITION 3 (ConvEX HuLL). The convex hull is the minimal convex set containing the given
points.

Note that this definition does not require the given points to be finite in number; therefore, the
convex hull can be a general convex set.

3 Our Approach: WRAAcT

This section begins with definitions of the function hull and double-linear-piece (DLP) functions,
and a taxonomy of activation functions (Section 3.1), and presents our main algorithm with an
example to facilitate understanding (Section 3.2). Each step of the main algorithm regarding how
WRAACT handles general activation functions is presented in Section 3.3.

3.1 Definitions

3.1.1 Function Hull. This work aims to calculate a convex polytope in H-representation that
over-approximates the function hull Conv((X, Y)), where X is a given input polytope and o is an
activation function.

DEFINITION 4 (FuNcTION HULL). Given a bounded convex polytope X C (x1,xz,- - , x)-space as
the input domain and its image Y = o(X) C (y1, Y2, - - - , Yn)-space under an activation function o
withy; = o(x;) (i € 1..n), the convex hull Conv((X,Y)) € R*" is called function hull under o.

3.1.2 Double-linear-piece (DLP) Function. A DLP function is a piecewise linear function with two
linear pieces, defined by two linear functions combined using the max or min function.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 308. Publication date: October 2025.

Convex Hull Approximation for Activation Functions 308:7

(c) Approx. DLPs.

(e) Function hull.

(a) Activating Input. (b) Constructing DLPs. (d) Identifying constr.
Fig. 2. lllustrative overview of WRAACT’s pipeline, which includes activating inputs (a), constructing and
approximating the DLP (b-c, Step 1-2), identifying constraints (d, Step 3), and forming the function hull
over-approximation (e). The multi-neuron constraints consider the space of multiple inputs and outputs, and

here, three dimensions (two inputs and one output) are considered.

DErInITION 5 (DLP FUNCTION). A DLP function g : R* — R is a piecewise linear function with
two linear pieces, defined as

g(x) =max{a’x+c, P'x+d} or g(x)=min{a’x+c, bTx+d},

wherea, b € R" (a # kb, k # 0) and ¢, d € R are constant vectors and scalars.

Here, max functions are convex, and min functions are concave. The definition applies to both
single-variable and multi-variable DLP functions. The condition a # kb ensures that the two linear
pieces are not parallel, avoiding degeneration to a single linear function. DLP functions are used by
WRAACT because they can be linearly transformed to a ReLU function (proved later in Lemmas 2
and 3), and the ReLU hull properties [Ma et al. 2024] can be generalized to DLP functions with
soundness.

Table 1. Activation functions taxonomy.

Category Examples
S-shaped: Sigmoid y=1/(1+e™)
- They are monotonically increasing. Tanh y=(e*—e)/(eX+e7¥)
- They are concave on the positive axis) 1, x>0
and convex. Sign y=
- They asymptotically approach a con- 0, x<0
stant, respectively, on the positive and Softsign y=x/(1+|x])

negative axes.

ReLU6 [Howard et al. 2017]

y = min{ReLU(x), 6}

ReLU-like:

- They are monotonically increasingf

Leaky ReLU [Maas et al. 2013]
ELU [Clevert et al. 2016]

y = max{ax, x}
y = max{e* — 1,x}

- They are concave on the positive axis ~GELU [Hendrycks and Gimpel 2023]% y = x®(x)

and convex on the negative axis'. Softplus [Glorot et al. 2011] y =log(1+e¥)

- They asymptotically approach a con- Sif,U [Hendrycks and Gimpel 2023] y=x/(1+e)

stant on the negative axis and a linear ReLU(x) X< -3Vx>3

function on the positive axis. Hardswish [Howard et al. 2019] = ’ - -
x(x+3)/6, -3<x<3

Multi-variable: MaxPool y = max{xy, X, -+, Xp}

- They have multiple input variables.

T GELU, SiLU, and Hardwish have almost the same characters without considering small local differences. * d(x) is
the cumulative distribution function for the Gaussian distribution.

3.1.3 Activation Function Taxonomy. Existing commonly used activation functions are mainly
single-variable functions and can be broadly categorized into two types: S-shaped and ReLU-like
functions (see Table 1). S-shaped functions, characterized by their “S”-like shape, include the
Sigmoid (logistic) function, Tanh (hyperbolic tangent) function, Sign function, Softsign function,

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 308. Publication date: October 2025.

308:8 Zhongkui Ma, Zihan Wang, and Guangdong Bai

and ReLU6 [Howard et al. 2017]. ReLU-like functions are characterized by their horizontally flipped
L-shape, including leaky ReLU [Maas et al. 2013], ELU (exponential linear unit) [Clevert et al. 2016],
GELU (Gaussian error linear unit) [Hendrycks and Gimpel 2023], Softplus function [Glorot et al.
2011], SiLU (sigmoid linear unit) [Hendrycks and Gimpel 2023], and Hardswish [Howard et al.
2019].

Multi-variable functions are rarely used as activation functions, and MaxPool is one of the notable
examples. It selects the maximum value from a set of inputs and features its convexity. This work
focuses on exemplary implementations of Sigmoid, Tanh, leaky ReLU, ELU, and MaxPool activation
functions, demonstrating a methodology that can be generalized to other similar functions.

3.2 The Main Algorithm

3.2.1 Overview. The main algorithm of WRAACT is presented in Algorithm 1. WRAACT takes as
input a polytope X with the lower bounds I and upper bounds u (shown in Figure 2a), and aims to
construct a function hull over-approximation M C (x, y)-space, such that

M 2 Conv((X,Y)) = Conv((X,c(X))).

The input (i.e., X) and output (i.e., M) are both in H-representation to provide linear constraints to
facilitate the verification. Note that the algorithm is valid for any ordering of output dimensions and
supports the computation of partial output dimensions. WRAACT processes the output dimension
iteratively, so the ordering o of the output dimensions (decreasingly ordered by input ranges) is
provided to the algorithm as an input argument.

Algorithm 1: WraAcT (X, I, u, 0)
Input :X:Input polytope; I: Lower bounds of input variables; u: Upper bounds of input variables; o:
Indices of output dimensions.
Output: M: Function hull over-approximation
M — X, M «— X.copy();
2 V « GetVertices(X);
3 Ve V.copy();
4 while i « GetNextOutputDimension(o) do
// Step 1: Segmenting the function and constructing DLP functions as bounds.
5 0,0 « BoundFunction(i, [;, u;);
// Step 2: Over-approximating convex hulls of DLP functions.
6 M, ¥V « DLPHUII(M, V, o, i);
7 | M,V «— DLPHUII(M, V, G, i);
// Step 3: Identifying constraints from DLP function hull approximations.
s My, <« 0;
s foreach constrainta’x +bTy+c > 0 in M do
10 L if all entries in b are positive then Mp,.add(a” x +bTy + ¢ > 0);

-

1 foreach constrainta’ x + bTy +c > 0 in M do

12 L if all entries in b are negative then M,,.add(a”x + bTy + ¢ > 0);
// Step 4: Complementing with single-neuron constraints.

13 M « SingleNeuronConstraints(l, u);

1u M — My n Mg

15 return M

Algorithm 1 consists of four main steps, i.e., 1) constructing DLP functions, 2) over-approximating
DLP functions, 3) identifying linear constraints from DLP Over-approximation, and 4) comple-
menting with single-neuron constraints. The key innovation lies in the DLP function construction

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 308. Publication date: October 2025.

Convex Hull Approximation for Activation Functions 308:9

when processing various activation functions and the construction of over-approximation of the
activation function based on the over-approximation of constructed DLP functions. For the former,
WRrAAcT adopts different strategies for S-shaped and ReLU-like functions (Step 1), which are
discussed in Section 3.3. For the latter, WRAACT first obtains the DLP function over-approximation
with a precise and efficient method inspired by WraLU [Ma et al. 2024] (Step 2). As DLP functions
are constructed locally, the linear constraints from the DLP function over-approximation may not
be sound for the target function (Challenge #1), and the linear constraints are not tight for the
whole input domain of the target function (Challenge #2). For Challenge #1, WRAACT identifies
constraints sound for the target function (Step 3), and for Challenge #2, it uses single-neuron
constraints as complements to achieve a tight over-approximation for the target function.

3.2.2 Algorithm Steps with a Running Example. Below, we brief each step of Algorithm 1. To
facilitate the understanding, we present the calculation of a convex hull of the Tanh function
o in the (x,x2, Y1, y2)-space as a running example (detailed numerical results are provided in
Appendix A.1). Step 1 (Figure 2b) involves constructing DLP functions, g; and o;, as lower and
upper bounds for the i-th coordinate. Step 2 (Figure 2c) calculates the convex over-approximations
M and M of these DLP functions. In Step 3 (Figure 2d and Figure 2e), constraints are identified

from M and M to form a convex hull over-approximation of the target function o, denoted as
M, 2 Conv((X,Y)). Since the first three steps only supply constraints for the local geometry,
additional linear constraints from single-neuron over-approximations M are incorporated in Step
4 to construct a tighter function hull over-approximation M = M, N M, of the target function.

Step 1: Segmenting the function and constructing DLP functions as bounds. First, we
construct DLP functions to serve as the lower and upper bounds for the target function y; = o(x;)
within the domain x; € [-2, 2] fori = 1, 2, as shown in Figure 2b and 3a (function Boundfunction(-)
in Algorithm 1). Based on the S-shape of the Tanh function, we segment it into three pieces.
Specifically, for the locally convex segment of the target function, we formulate a convex DLP
function o;(x;) that consistently lies above the target function, and for the concave segment, a
concave DLP function g,(x;). The DLP functions o;(x;) and o;(x;) satisfy

g,(x1) < o(x1) <T1(x1), 0,(x2) < 0(x2) < Ta(x2). (1)
Step 2: Over-approximating convex hulls of DLP functions. We then calculate the function hull

approximations M and ‘M of the DLP functions as follows (function DLPHu11(-) in Algorithm 1;
detailed in Algorithm 2),

M, 2 Conv({(x,0,(x1)) | x € X}), My 2 Conv({(x,51(x1)) | x € X}), @

using an efficient algorithm inspired by WRaALU [Ma et al. 2024] (illustrated in Figure 2c and
discussed in Section 4.2).

Step 1 and Step 2 are iteratively applied for y; after y;, and each output dimension is considered
for general cases. For the case of y3, the convex approximations

M =M, 2 Conv({(x,g,(x1),0,(x2)) | x € X}),
M =My 2 Conv({(x,71(x1),52(x2)) | x € X}),

are constructed using g, (x;) and 73 (x3).

Step 3: Identifying constraints from DLP function hull approximations. Intuitively, we
construct two convex polytopes, M and M, in Steps 1 and 2, which lie below and above (X, Y),
respectively. Subsequently, the convex approximation to Conv((X, Y)) is defined by the constraints
identified from M and M (lines 7-10 in Algorithm 1). In this process, the constraints from M that
provide upper bounds for o and the constraints from M that provide lower bounds for o (shown

®)

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 308. Publication date: October 2025.

308:10 Zhongkui Ma, Zihan Wang, and Guangdong Bai

in Figure 2d) are selected. They together form an over-approximation in the (x1, x2, y;)-space (see
Figure 2e). The convex approximation incorporating multi-neuron constraints along with the input
constraints from X is

M 2 Conv((X, Y)). (4)

Step 4: Complementing with single-neuron constraints. The above process only considers
the upper and lower constraints for local convexity or concavity, without considering the lower
and upper constraints for convexity or concavity. Therefore, we complement the multi-neuron
constraints with the single-neuron over-approximation (function SingleNeuronConstraints(:)
in Algorithm 1)

M; 2 Conv((X, Y)). ®)
This results in a tighter function hull approximation,
M= Mp 0 M. (6)

3.3 Key Components of WRAACT

This section details key techniques in each step when handling different activation functions. This
demonstrates the application of our approach to general activation functions based on the taxonomy
in Section 3.1 for constructing DLP functions (Step 1), over-approximating DLP functions (Step 2),
identifying constraints from the DLP function approximations (Step 3), and constructing single-
neuron constraints (Step 4).

(a) y = tanh(x) (x € [—4,2]). (b) y = ELU(x) (x € [-3,3]).
Fig. 3. DLP function construction of Tanh and ELU (more cases and details in Table 2). The hatched areas
show the fit degree between the DLP function(s) and the target function. The lower (or upper) DLP function of
the Tanh function only has a good approaching when x > —0.5 (or x < 0.5), so a further tighter approximation
needs single-neuron constraints.

3.3.1 Construction of DLP Functions. We first present the construction of DLP functions as bounds
(Step 1) for typical functions, including Sigmoid, Tanh, leaky ReLU, and ELU functions. WRAACT
takes different strategies in handling different activation functions. For S-shaped functions, it
segments them into three pieces, i.e., the lower asymptote, the increasing piece, and the upper
asymptote. As each pair of two adjacent pieces forms a convex/concave function, it constructs one
convex and one concave DLP function to approach the S-shaped function. For ReLU-like functions,
as they naturally have two segmented pieces that can form a convex function, WRAACT constructs

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 308. Publication date: October 2025.

Convex Hull Approximation for Activation Functions 308:11

one convex DLP function instead. Table 2 demonstrates the constructed DLP functions for typical
activation functions of each category, and an example of ELU is in Figure 3b. For multi-variable
functions (i.e., MaxPool, see Section 3.1.3), we introduce multi-variable inequalities to construct
multi-variable DLP functions (detailed in Section 4.1.1).

Table 2. Demonstration of constructing DLP functions as bounds for various activation functions (S-shaped
functions have a symmetrical case of lower DLP functions, and ReLU-like functions only have upper DLP
functions). Examples are shown in Figure 3.

Case Upper DLP Function o

sigmoid(x), tanh(x) "

omp)—o) . _ <
ky >k, Au>0 { my—1 (x=D+o(l), x<my
kml(x - ml): X = my

s(m)—o(D)
——L 2 (x=-D+0c(]), x<m
ku > kiy Au<0 { (=D +al) !

o(my)—o(u)
#(x —u)+o(u), x>m

No DLP function construction for multi-neuron con-
straints, but using single-neuron constraints for efficiency.

other Other domains (e.g., [-3, —2]) exhibit minor fluctuations,
so multi-neuron constraints offer little benefit consider-
ing their cost.

LeakyReLU(x) (@ = 0.01)

ax, x<0

[1<0<

The leaky ReLU function degenerates as y = x when! > 0

other and y = ax whenu < 0.
ELU(x)}
o(l)—o(m
[<0 {aiu))‘_’g((,:)x’ x=m
—=m X xzm
other The ELU function degenerates as y = x when [> 0.

T The lower DLP function has a symmetrical case with m,, because S-shaped functions are centrally

symmetrical. kj,, = % my and m,, are tangent points of the tangent lines such that

o' (my) = o’(my) = ki, such that m; < 0 < my,. ks, is the slope of a tangent line crossing
(my, o(mp)) with a positive tangent point. kyy,, is the slope of a tangent line crossing (my,, o(my,))
with a negative tangent point. ¥ m = (u + 1) /2.

DLP functions for S-shaped functions. WRAACT exploits the property of S-shaped functions that
two tangent lines crossing the given point (x’, o(x”)) excluding (0, 6(0)). One tangent line is y =
o’ (x")(x—x")+0(x") taking (x’, o(x")) as tangent point and another one is y = ¢’ (m) (x—x")+o(x")
taking (m, oc(m)) as tangent point, where I < m < u. Various approaches have leveraged this
property to develop methods for calculating tangent lines [Henriksen and Lomuscio 2020; Zhang
et al. 2018]. An S-shaped function is convex when x < 0 and concave when x > 0. At most two
DLP functions are needed as the upper bound for the convex segment and the lower bound for the
concave segment. Details are in Table 2, and an example of Tanh is in Figure 3a.

DLP functions for ReLU-like functions. Based on the shape of ReLU-like functions, only one
convex DLP function will be constructed as the upper bound of the target function. Details are in
Table 2, and an example of ELU is in Figure 3b.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 308. Publication date: October 2025.

308:12 Zhongkui Ma, Zihan Wang, and Guangdong Bai

DLP functions for MaxPool function. One multi-variable DLP function g(x) = max{a’x +
¢,bTx + d} such that g(x) > MaxPool(x) with the input domain X, is constructed due to the
convexity of MaxPool (detailed in Section 4.1.1).

3.3.2 Over-approximation of DLP Functions. The algorithm to over-approximate the DLP function
(Algorithm 2) is inspired by a recent study of ReLU hull over-approximation named WRALU [Ma et al.
2024], given that the two linear pieces of a ReLU function resemble those of the DLP function. The
algorithm process one output dimension y; to collaborate with Step 2 in Algorithm 1. In Section 4.2,
we provide a theoretical analysis to show that this resembling can establish the soundness of
WRAACT from that of WRaLU.

For trivial cases, i.e., all vertices of the input polytope M;_; are in the same piece of the DLP
function, WRAACT only needs to add an equality constraint determined by the linear piece to the
input polytope M;_; (line 3). For non-trivial cases, WRAACT adds two constraints determined
by the two linear pieces (P; and P,) of the DLP function (g) (line 5) by the convexity/concavity
(GetPieces in line 3). Then, WRAACT uses the vertices and edges of the two linear pieces from the
DLP function to pinpoint the faces, determining constraints for the over-approximation. Specifically,
WRAACT select open edges, i.e., those edges yield new faces, and combine each open edge and one
vertex to form a face (lines 8-11) and check the faces’ validity (lines 12-14). Here, if a new face £
does not cross P or P,, producing two sets with non-empty interior, the new face is valid. The valid
faces determine constraints based on the convexity/concavity of the DLP function (GetConstr(-)
in line 14). Then, the constraints determined by valid faces are added to M;, completing the
over-approximation for the DLP function for the i-th output dimension.

Algorithm 2: DLPHUll (M;_1, Vi1, g, i)

Input :M;_q: Over-approximation for the (i — 1)-th dimension; V: Vertices of input polytope; g:
DLP function for the i-th dimension; i: the i-th output dimension.

Output: M;: Over-approximation for the i-th dimension

Vi « ExtendDimension(V;i-1,g,1);

Mi — Mi_1;

P1, Py < GetPieces(g);

M, isTrivial « TrivialCases(M;, Vi, P1, P2, 9);

if isTrivial then return M;;

M, .add(GetConstr([P1,P2],9));

F «— 0;

foreach constraint pTx + q y+r > 0 in M;_; do

9 E—pTx+qTy+r=o0;

10 if P1 N E # 0 then F.add(E);

11 if P, N E # 0 then F.add(E);

12 foreach face L € ¥ xV do
13 if L splits P1 or P, into halves then continue;
14 M;.add(GetConstr(L,g));

15 return M;, V;

N G A W N e

o

3.3.3 Constraints Identification from DLP Function Hull Approximations. After obtaining the over-
approximation of the DLP functions (Step 2), WRAACT identifies the constraints from the DLP
function over-approximations for constructing the over-approximation of the target function (Step
3). To this end, it filters out unsound constraints for the target function within the global input
domain. When a DLP function is an upper bound of the target function, the upper constraints of
the DLP function are taken as the upper constraints of the target function. The case for the lower
bound is handled similarly. Because only one output dimension is considered in one iteration of

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 308. Publication date: October 2025.

Convex Hull Approximation for Activation Functions 308:13

WRAACT, we can identify the lower/upper constraints for each output dimension by the signs of y;
in the linear constraints.

Table 3. Single-neuron constraints for various activation functions. Examples are shown in Figure 1.

Case (x € [Lu]) Upper Constraints Lower Constraints

sigmoid(x), tanh(x)

o (D(x=1+a(l),
o' (u)(x —u) +o(u),
ki (x = my) + o(my)
od(D(x-1+a(l),
ki(x —u) + o(u),

ki (x — my) + o(my)

dWw) 2k hu<0 y<kyux-10)+o(l)

W2k Au>0 y<kyu(x—1)+o()

"(D(x =1 +a(l),
"w)(x—u)+o(u), y=ky(x—u)+o(u)
u(x —my) +o(my)

o
o) =2k ANl2=0 o
ki
ku(x =D +0o(l),
o
k
o

() 2k AL<0 "W (x—u)+o(u), y=ky(x—u)+o(u)

tu(x = my) + a(my)

"w(x—-—u)+o(u), y=o)(x-1)+0o(l),
ku(x =1 +o(), y > ki(x—u)+o(u),
kpy(x —my) +o(my) y = ki, (x — my) + o(my)

LeakyReLU(x) (a = 0.01)

ki > o' (1) A kg > o (u)

e |eewe twew
ININIA

INIAIA

I>0 y<x y=>
u<0 y<oax y=ax
1<0<u y < ku(x = 1) +o(]) g;j"
ELU(x)"$
I[>0 y<x y=>x
y2a(D(x-1)+ao(l),
I<0 y < kp(x=0)+0o(l) y =o' (u)(x—u)+o(u),
y > o' (m)(x —m) +o(m)
T kpy = M # my and my,, are tangent points of the tangent lines such that o’ (m;) = ¢’ (my,) =

ki, such that ml < 0 < my. k; (or ky,) is the slope of another tangent line across (u, o (1)) (or (1, o(1)))
such that k; # o’ (u) (orky, # o’ (1)). Y m = “T”

3.3.4 Construction of Single-neuron Constraints. This section provides the technique of construct-
ing single-neuron constraints (Step 4 in Algorithm 1) for typical Sigmoid, Tanh, leaky ReLU, and
ELU functions. Table 3 demonstrates the single-neuron constraints implemented by this work for
different activation functions.

Single-neuron constraints of S-shaped functions. Despite the single-neuron constraints of
S-shaped functions being deeply studied [Henriksen and Lomuscio 2020; Zhang et al. 2018] for
bound propagation with two linear constraints as the lower and upper bounds, we propose our
specific implementation for over-approximation as tight as possible with more than two linear
constraints. Several linear constraints are constructed depending on the input domains. Details are
provided in Table 3.

Single-neuron constraints of ReLU-like functions. For single-neuron constraints, a similar
relaxation of the ReLU function is constructed: one constraint as the upper bound and two or
three constraints as the lower bound. In this work, we accept a single-neuron constraints selection
similar to ReLU and select y < kj,(x —) + o(I) and y > ¢’ (m)(x — u) + o(m) as the upper and

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 308. Publication date: October 2025.

308:14 Zhongkui Ma, Zihan Wang, and Guangdong Bai

lower linear constraints for bound propagation, which only applicable for one upper and one lower
linear constraints. Details are in Table 3.

Single-neuron constraints of MaxPool function. The MaxPool function y = MaxPool(x) is a
convex piece-wise linear and multi-variable function. The lower bound is trivial and is y > x; for
each input x;. This work accepts the commonly used upper constraint y < t,x, Where uy,y is the
largest upper bound of all input variables [Singh et al. 2019b; Zhang et al. 2018].

4 Soundness of WRAACT

This section analyzes the soundness of WRAACT to over-approximate the function hull of a given
activation function. It aims to conclude the soundness of Algorithm 1 as Theorem 1.

THEOREM 1 (SOUNDNESS OF MAIN ALGORITHM). Given an bounded polytope X C R" as input
polytope and an activation function o, the polytope M output by Algorithm 1 is an over-approximation
to Conv((X,Y)) = Conv((X, 0(X))), i.e, M 2 Conv((X,Y)).

Proof Overview. We break down the soundness of WRAACT into the merits of each of the four main
steps outlined in Algorithm 1. By combining them, we can establish the proof.

(1) DLP functions construction. The DLP function constructed in Step 1 is a lower or upper
bound of the target function (i.e., Formula (1)). This is formulated by Lemma 1 in Section 4.1.

(2) Over-approximation of DLP functions. The over-approximation to the DLP function is
sound (i.e., Formulas (2) and (3)). This is formulated by Lemmas 2 and 3 in Section 4.2.

(3) Constraints identification. The constraints identified by Step 3 formulate a sound over-
approximation for the function hull of the target function in the entire input domain (i.e.,
Formula (4)). This is formulated in Lemmas 4 and 5 in Section 4.3.

(4) Single-neuron constraints identification. Step 4 provides complementary single-neuron
constraints to tighten the over-approximation constructed in Step 3. The soundness of these
constraints is formulated by Lemma 6 in Section 4.4.

The input bounded polytope is X C R" and the output polytope is Y C R" with the target
activation function 0. Without losing generality, in our proof, we considers y = o(x) for unary
activation function and multi-variable function y = MaxPool(x) = max{xy,...,x,} with x € X.
The discussion focuses on one output dimension for simplicity and can be extended to all output
dimensions sequentially.

4.1 Boundedness of Constructed DLP Functions

We prove that the constructed DLP function by Step 1 is either an upper bound or a lower bound by
partitioning the input domain and considering the linear pieces separately from the DLP function.

LEMMA 1. Given an activation function o : R* — R with an input domain X C R", WRAAcT
constructs a DLP function o or ¢ that satisfies

o(x) >a(x) or o(x)<o(x),
where x € X is the input variable.

Proor. We partition the input domain X into two parts, each with only one linear piece of the
DLP function ¢ or ¢. The linear function determined by each linear piece always has a higher and
lower output value than the target function in the partitioned input domain.

A ReLU-like function is segmented into two pieces when constructing DLP functions. WRAACT
uses these three points for determining the DLP function, i.e., two endpoints of the input domain
and one point between two endpoints. Because of the convexity of the two pieces (for the special
case of non-convex functions like SiLU, we need to specialize the middle point to make sure the

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 308. Publication date: October 2025.

Convex Hull Approximation for Activation Functions 308:15

two pieces do not cross the function), the line segments connecting these three points always have
a greater value than the ReLU-like function. Therefore, the DLP function determined by these three
points is an upper bound for the ReLU-like function within the input domain.

For the MaxPool function y = max{xy, Xz, . . ., X, }, the inequality x; +x; > max{x;, x;} (x;, x; > 0;
here we only consider the MaxPool after ReLU functions) is used to merge input variables into a
linear form. Consequently, we derive the inequality max{};c s, x:, 2. jes, X i} > max{xy, xa,...,Xn},
where §; and S form a partition of the set {1,2,...,n}. The expression max{};c s, Xi, 2 jes, X}
consists of two linear pieces and defines a DLP function that serves as an upper bound for the
MaxPool function (detailed in Section 4.1.1).

A S-shaped function is segmented into three pieces by WRAAcT. Unlike in ReLU-like functions,
the two endpoints cannot be taken to determine a DLP function because the S-shaped function is
not convex or concave in the whole input domain. Therefore, one tangent point is taken to replace
one endpoint with another point between the endpoint and the tangent point, determining a DLP
function. The first two pieces are convex, and three points determine a DLP function as the upper
bound. The last two pieces have a symmetrical scenario, obtaining a lower bound. O

4.1.1 DLP Functions for MaxPool Functions. In the following, we only talk about the case when
any entry in x can become the output. Note that we only consider the case of a MaxPool after ReLU
functions, where all inputs of the MaxPool are non-negative. This is a common practical setting.
Based on the formula of max{x;, x;} < x; +x; (x;, x; > 0), we partition the input variables into two

sets S; and S, (S; NS, = 0 and S; U S, = 1..n) such that

max{xi,...,X,} < max {Z Xi, Z xi} .

i€S; i€S,
To partition the input variables, we order the input variables by their ranges u; — I; and let S; be a
set of variables with odd indices and S, be a set of the rest variables because we aim to make the
upper bound of };c s x; and X ;¢ s, x; as small as possible to achieve a tight approximation.
Trivial inputs of MaxPool functions.. Because of the bounded input domain, some input
variables, called trivial inputs, will never be the output of a MaxPool function. The following
property shows how to filter those trivial input variables by the vertices of the given input domain.

PROPERTY 1 (TRIVIAL INPUT DETERMINED BY VERTICES OF INPUT POLYTOPE FOR MaxPooL FuNc-

TION). Given the input domain X C (xi,- -, x,)-space defined by a bounded convex polytope of the

MaxPool function MaxPool(x) = max{xy, - - -, xp}, if the vertices of X never take the i-th coordinate

X; as the output, i.e., for any vertexv = (vy,- -+ ,v,), v; never be as the output of MaxPool(x), then
MaxPool(x) = MaxPool(xy, - -+, Xj—1, Xi+1, " * * »Xn).

ProOF. On one hand, if any point p = (p1,- - -, pn) € X satisfies MaxPool(p) # p;, then there is
no vertex v such that yMaxPool(v) = v; because any point p includes any vertex v.

On the other hand, we prove that if any vertex v satisfies MaxPool(v) # v;, then there is no
point p such that MaxPool(p) = p;. We only need to consider the case without multiple equal
inputs and prove it by contradiction. Suppose there is one point p such that MaxPool(p) = p;, and
there is another p; as the second maximum value. We only consider the space of (x;, x}, y)-space.
There will be two sets, X N {x; > x;} # 0 and X N {x; < x;} # 0, because there is a point
p € XN {x; < x;} # 0 and all vertices are in X N {x; > x;} # 0. However, this is impossible
because X is a convex polytope defined by all vertices (Definition 2) and one hyperplane cannot
cut out a subset of X, which does not contain any vertex, due to convexity. Specifically, by the
V-representation of the convex polytope, any point p is a weighted sum of all vertices and such p
cannot satisfy the above situation. O

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 308. Publication date: October 2025.

308:16 Zhongkui Ma, Zihan Wang, and Guangdong Bai

Note that we can apply this property to each input coordinate to exclude all non-trivial ones.
In the practical implementation, 1) we first remove these trivial variables by their scalar bounds.
Specifically, given each entry x; in x satisfy x; € [l;, u;], where [; and u; are the lower and upper
scalar bound of x;, we can omit the x; whose upper bound u; is smaller than the lower bound of
any other entry x; (j # i), which is not yet the exact method. 2) After that, we calculate the vertices
of the input polytope and filter out all trivial input variables by Property 1.

4.2 Soundness of DLP Over-approximation

The soundness of the function hull over-approximation of a DLP function is indirectly guaranteed
by the case of a ReLU function [Ma et al. 2024]. Therefore, this reduces to proving the equivalence of
topological properties between a DLP function and a ReLU function. We consider two aspects of the
proof. 1) The DLP function can be linearly transformed to a ReLU function (formulated in Lemma 2).
2) The convex hull/over-approximation of a ReLU function can also be linearly transformed to that
of the DLP function (formulated in Lemma 3). In the following, we use two functions g and A in
(x,y)-space connected by a linear transformation to demonstrate our proof.

4.2.1 Linear Transformation between DLP and RelLU. The following lemma constructs a linear
transformation between DLP and ReLU based on the normal vectors of their linear pieces.

LEMMA 2. Given a DLP function g : R" — R, there exists a linear transformation £ : R™! —
R™! such that £ ((X,g(X))) = (X’,h(X")), and h is a ReLU function satisfying h(x’) = h(x]) =
ReLU(x}), wherex € X andx’ € X'. X and X" C R" are the input domains of g and h , respectively.

PrOOF. We take y = g(x) = max{a’ x + ¢, bT x + d} to explain our proof, and the case defined by
min is similar. All points in (X, g(X)) are either on the hyperplane y = a’x + c or y = b7 x + d. We
construct a linear transformation .# to make y = @’ x + ¢ and y = b” x + d transform to y’ = 0 and
y" = x7. Specifically, given a point (x,y), we aim to construct .2 : (x,y) = A - ((x,y) — 0), where
the matrix A € R("*D*("+1) js for the affine transformation and the vector o € R™*! is to translate
the intersection of y = @’ x + ¢ and y = b’ x + d to crossing the the original.

First, we aim to translate all points on y = @’ x + ¢ (or y = b”x + d) to the points on y = a’
T T

— BT : : a’ (x—op)+c—(y—ops)=a’ x—y

(or y = b"). We need to set o as a solution of the equation system { BT (x—on)4d—(y—oms)=b %y

{ a’ 0., —ons1=c

T -
b" 0.n—0n41=

y = 0 (or y = x1). Specifically, we set

. Second, we aim to transform all points on y = a’x (or y = b x) to the points on

T : T
1 1 0 (1) 1.1 On-1)
V=1 Lazoy | 1{az0} i Iin-1)x(n-1) and V'=| 0(p-1) | On-1) | In-1)x(n-1) |>
Z?:l ai ?:1 bi 0(Tn71) 0 l 1 O{nfl)

where 1440} (or 1{p40}) denote the vector whose entries are 1 at positions where a (or b) is nonzero
and 0 elsewhere, V represents a set of basis vectors in the given space. Note that V is invertible
because any two of its column vectors point in different directions, i.e., all column vectors are
linearly independent (a and b cannot be all-zero); so does V’. V™! . (x, y) provides the coordinates
by taking two vectors (the first two columns of V) on the planes of y = a” x and y = b” x as basis
vectors and other axes remain unchanged. Next, V' represents a set of basis vectors of the target
space and transforms points to the target space, where two vectors (the first two columns of V")
on the planes of y = 0 and y = x; as basis vectors, and other axes remain unchanged. Hence, by
considering AV = V’, we set A = V'V~!. Such A transforms all points on the plane of y = a’ x
(or y = bTx) to the points on y = 0 (or y = x;). Because all points can be represented by the basis
vectors determined by these column vectors in V or V’, A induces a linear transformation between

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 308. Publication date: October 2025.

Convex Hull Approximation for Activation Functions 308:17

the corresponding coordinate systems, where y = a’x (or y = b”x) is taken as y = 0 (or y = x;).

Therefore, we complete the proof. O

Lemma 2 connects the function hull between ReLU and DLP functions. The invertible trans-
formation A = V'V~! with o transforms the DLP function to a ReLU function, and A~! with o
transforms the ReLU hull to a DLP function hull, which connects their properties (analyzed in
the next Section 4.2.2). Two examples (2-dimensional and 4-dimensional cases) are provided in
Appendix A.2.

4.2.2 Over-approximation from ReLU to DLP. The following lemma analyzes the relative geometry
positions between the over-approximation and the target function before and after the linear
transformation.

LEmMA 3. Given (X, g(X)) and (X', h(X")) with a linear transformation £ in Lemma 2, if there is
a convex polytope M’ € R™! such that M’ 2 Conv((X’,h(X"))), then the convex polytope M € R"

under the inverse linear transformation £~ : R™! — R™1 (considering the constant term as an

extra dimension) satisfies 1 (M’) = M 2 Conv((X, g(X))).

ProoF. We first define the constraints under the linear transformation. Given a linear constraint
r'Tx+s'y+t' > 0defined in M’, its corresponding linear constraints 7' x + sy +t > 0 determining
M is determined by all the points linearly transformed by all points of r'7x + s’y + t’ = 0. One
point in (X, g(X)) is needed to determine the inequality sign (> or <) by holding soundness of
over-approximation.

We consider the constraints individually and analyze the position between their supporting
planes and the function surface within the input domain, i.e., we will prove that the function surface
will always be on one side of the supporting plane determined by a linear constraint. Then, it is
to prove the fact that two continuous surfaces, ie., (X', h(X’)) and rTx + s’y +t’ = 0, without
crossing still have no crossing after linear transformation, i.e., (X, g(X)) and rix+ sy+1t =0, even
though they have tangent points. We prove this by categorizing the points into non-tangent and
tangent points.

1) For any tangent point u’, its two tangent hyperplanes on (X’,g(X’)) and r'Tx +s'y+t' =0
are the same one. After linear transformation, the two tangent hyperplanes are still the same one
on (X, g(X)) and rTx +sy+t > 0. This shows the tangent point still holds after the transformation.

2) For non-tangent points, we prove by contradiction. We assume that there are two non-tangent
points p = (px. py), 4 = (Px. py) € (X,g(X)) such that r’ p, +spy +1 < 0 < r’qy +sq, +1 and
any pre-transformed point satisfy the constraints 7’7 x + s’y + ¢’ > 0 (or r’ x + sy + t < 0). Because
the continuity of (X, g(X)), there exists one point u = (uy, uy) € (X, g(X)) on the line crossing p
and q such that rTu, + su, +t = 0 and u is not a tangent point. Then, u’ = £ (u) € (X', h(X"))
such that rTu/, + su/, +t = 0 is not a tangent point. However, this contradicts the assumption of

y
r'Tx+s'y+t" >0 (orr’x+sy+t < 0) hold for any pre-transformed point. O

By Lemma 2 and Lemma 3, all properties of ReLU hulls [Ma et al. 2024] have equivalent ones in
the DLP functions hulls.

4.3 Soundness of Constraint Identification

The following lemmas consider the bound relation among the constraints of the DLP function, the
DLP function itself, and the target function to prove the soundness of constraint identification.

4.3.1 Upper Constraints Identification.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 308. Publication date: October 2025.

308:18 Zhongkui Ma, Zihan Wang, and Guangdong Bai

LEMMA 4 (UrPER CONSTRAINTS IDENTIFICATION). Given a convex polytopem 2 Conv((X,a(X)))

from Algorithm 1, for any constraint a’ x + bTy + ¢ > 0 of M, if all components of b are non-positive,
then any points in (X, 0(X)) satisfies this constraint.

Proor. We focus on any one constraint a’ x + b’y + ¢ > 0 and any one output dimension i. The
other constraints and output dimensions are similar.

1) When b; = 0, the points in Y satisfy the constraint since no bound on y;.

2) When b; < 0 and all entries of b are non-positive, then any point (x,y) € M satisfies
U < (@'x+ X jer pnjei b;y; + ¢)/b;. By the construction of 7; (Lemma 1), we have o(x;) = y; <
oi(x;) =y, forany i € 1..n. Consequently, y; < (aTx+Zj€1“n,\j¢,~ bjy;+c)/b;. Thus, the coordinate
y; satisfies the constraint. O

4.3.2 Lower Constraints Identification. We have the lemma below for the symmetrical case of
concave DLP functions as the lower bounds of the target function.

LEMMA 5 (LOWER CONSTRAINTS IDENTIFICATION). Given a convex polytope M 2 Conv((X, o(X)))
in Algorithm 1, for any constraint a’ x + bTy + ¢ < 0 of M, if all components of b are non-negative,
then any points in (X, Y) satisfy this constraint.

Proor. The proof is symmetrical to that of Lemma 4. O

4.4 Construction of Single-neuron Constraints

The soundness of the single-neuron constraints (in Section 3.3.4) is analyzed by taking each
constraint as a linear function and checking if the linear function is always less than or greater than
the target function. The detailed proof of single-neuron constraints is provided in Appendix A.3.

LEMMA 6. Given an activation function o : R" — R with an input domain X C R, the corresponding
single-neuron constraints presented in Section 3.3 form a sound over-approximation.

Proor. We prove each linear constraint is sound to the activation function ¢ in the input domain
X. Each linear constraint determines a linear function. If the linear function value is always less
than the target function value, it determines a lower linear constraint for the target function. It is
symmetrical for the upper constraints. We summarize the cases of constraint construction below
and omit the detailed proof due to space limitations.

1) If the linear constraint is determined by the lower/upper bound of the output variable, it is
naturally sound, e.g., the upper bound of the MaxPool function is determined by the upper output
bound.

2) If the linear constraint is determined by the endpoints of the input domain, the convex-
ity/concavity of the target function guarantees the soundness, e.g., the upper constraint of the ELU
function.

3) If the linear constraint is determined by a tangent point, we need to divide the target function
by the tangent point and analyze each part, considering the monotonicity. O

5 Evaluation

We conduct a comprehensive evaluation of WRAAcT, with both intrinsic and extrinsic analyses.
The intrinsic evaluation focuses on its capability in function hull approximation. We compare it
with the state-of-the-art multi-neuron over-approximation method SBLM+PDDM [Miiller et al.
2022] on Sigmoid, Tanh, and MaxPool functions (Section 5.1). The extrinsic evaluation focuses on
its performance in local robustness verification of neural networks. To this end, we implement a
verifier integrating WRAACT to verify various network architectures and activation functions and
compare it with SOTA verifiers (Section 5.2).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 308. Publication date: October 2025.

Convex Hull Approximation for Activation Functions 308:19

5.1 Function Hull Over-approximation

5.1.1 Experiment Settings. The input data in our experiments is a bounded polytope presented in H-
representation with bounds of each input variable, yielding a convex polytope in H-representation
as the resulting approximation of the function hull.

Input Data Generation. Each polytope sample has 3" randomly generated constraints with 2n
constraints for ranges [—6, 6] of every variable to yield a bounded polytope, where n is the input
dimension. Specifically, for a randomly generated constraint ax + b > 0, each component of a
follows a uniform distribution U[-1, 1], while the constant b follows U[—5n, 5n]. 30 samples for
each setting are used.

Volume Estimation. Random points are sampled within a box region defined by the bounds of the
variables, where y; adheres to the bounds of o(x;). The volume of the function hull approximation

M is estimated using the formula volume(M) = 1 - #(Sa:g llf f;;rglse (;lglsrf:) M) Our evaluation follows
previous studies by taking 1 million random points (see the decimal digits in Table 4).

Baselines. We select two baseline methods for calculating multi-neuron constraints. Since the multi-
neuron method SBLM+PDDM from PRIMA [Miiller et al. 2022] only provides implementations for
Sigmoid, Tanh, and MaxPool, we focus on these three functions. They are considered representative
due to their non-linearity and expensive use in current multi-neuron approximation methods.
Evaluation metrics. Performance evaluation is divided into four key metrics, including 1) precision,
measured by the volume of the resultant polytope, 2) efficiency, measured through computation time,
3) constraints complexity, measured by the number of constraints of the resulting approximation,
and 4) scalability, indicative of the method’s capacity to handle high-dimensional data.

Table 4. Performance of function hull over-approximation methods (Sigmoid, Tanh, and MaxPool).

Input Sigmoid Tanh MaxPool

Dim. SBLM+PDDM WRAACT SBLM+PDDM WRAACT SBLM+PDDM WRAACT

Runtime (s)
2 0.000669+(0.000046) 0.000862+(0.000096) 0.000662+(0.000054) 0.001043+(0.001194) 0.000119+(0.000031) 0.000504+(0.001156)

3 0.009399:£(0.001275) 0.001960(0.000264) 0.009054:£(0.001169) 0.0018942(0.000084) 0.000824:£(0.000061) 0.000397(0.000032)
4 1.138171%(0.736798) 0.003042(0.000376) 0.841187+(0.392547) 0.002740+(0.000395) 0.011249+(0.001188) 0.000908:(0.000157)

Estimated Volume

2 0.144941+(0.058328) 0.039445+(0.035453) 0.182942+(0.046511) 0.000508+(0.002732) 0.098952+(0.035790) 0.026968+(0.014586)
3 0.039991+(0.023670) 0.004283+(0.005420) 0.067376+(0.021906) 0.000003+(0.000013) 0.071021+(0.028629) 0.009600-+(0.009362)

4 0.003663+(0.002791) 0.000026+(0.000073) 0.014300+(0.006206) - 0.026038+(0.009498) 0.002638+(0.002344)
Number of Constraints

2 30.90:+(4.83) 37.60+(0.76) 30.67+(5.13) 37.60+(0.61) 8.50+(1.20) 16.00(0.00)

3 158.40+(32.75) 83.80+(0.95) 148.93+(26.03) 83.77+(0.42) 31.07(5.20) 37.00:(0.00)

4 1409.97+(530.94) 202.73+(2.10) 1188.03+(369.98) 201.57+(0.67) 162.73+(14.84) 94.00+(0.00)

The symbol “-” indicates that none of the randomly sampled points fall inside the function hull over-approximation.

5.1.2 Results. Table 4 presents the mean values and corresponding standard deviations for preci-
sion, efficiency, and constraints complexity over input dimensions from 2 to 4. The mean indicates
overall performance, while the standard deviation captures variability in the results, with a lower
standard deviation representing greater consistency across different samples. We also illustrate
the scalability of WRAACT in Figure 4, which measures the time consumption for handling high-
dimensional polytopes with input dimensions up to 8. Note that the implementation of other
multi-neuron methods (SBLM+PDDM) does not support input dimensions greater than 4.

Precision. All methods aim to over-approximate the function hull, resulting in approximations that
inherently have a larger volume than the exact function hull. A more precise over-approximation
is indicated by a smaller volume that closely matches the convex hull. Since computing the exact
volume is impractical, we estimate volumes using random sampling. As shown in Table 4, WRAACT

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 308. Publication date: October 2025.

308:20 Zhongkui Ma, Zihan Wang, and Guangdong Bai

outperforms SBLM+PDDM in terms of precision, exhibiting both lower mean volumes and smaller
standard deviations. It achieves 20X-300X compared to the multi-neuron method SBLM+PDDM.
WRAACT also demonstrates a lower standard deviation compared to WRAACT, indicating more
stable performance.

Efficiency. As demonstrated in Table 4, WRAACT consistently outperforms SBLM+PDDM, espe-
cially in higher dimensions, achieving up to 400X faster speeds.

Constraints complexity. The number of constraints in resulting polytopes indicates their sim-
plicity, with fewer constraints often proving advantageous when employing optimization for sub-
sequent verification. Experimental findings in Table 4 reveal that SBLM+PDDM exhibits a higher
constraint count. Notably, WRAACT reduces constraints by up to 90% compared to SBLM+PDDM.
The constraint count of WRAACT closely correlates with the characteristics of the input polytopes.
Specifically, WRAACT incorporates the same number of constraints as the input polytopes plus
those stemming from single-neuron constraints.
Scalability in high-dimensional cases.

Given the frequent involvement of high- W] S
dimensional data in NN verification, scaling £

effectively presents a significant challenge for " | & =0
approximation methods, as highlighted in other o
studies [Ma et al. 2024; Miller et al. 2022]. As 0] §
depicted in Figure 4, WRAACT exhibits robust
scalability, successfully handling higher dimen- ! .
sions and completing the approximation task ‘ i " Iuput Dimension
within 10s for scenarios up to 8 dimensions. Fig. 4. Scalability analysis of WRAACT.

We cap the input dimension at a maximum of

8, aligning with typical application domains like NNs, where a large number of constraints may
introduce redundancy under common settings. The constraints of the input polytope influence the
calculation, and a simpler input polytope will have better scalability. It is important to note that
the current implementation of SBLM+PDDM is limited to an input dimension of no more than 4.

Time(s)

10

6 7 B

5.2 Local Robustness Verification

This section delves into the performance of WRAACT on neural network verification achieved
through implementing a verifier based on WRAACT (denoted by NNVERIF). We focus on assessing
1) the enhancement from multi-neuron constraints compared to the SOTA multi-neuron constraint
method SBLM+PDDM [Miiller et al. 2022], 2) the applicability of NNVERIF on various activation
functions, and 3) the scalability of NNVERIF with large-scale networks.

5.2.1 Verifier Implementation. We integrate WRAACT into our neural network verification frame-
work NNVERIF. It combines bound propagation and linear programming approaches, supporting
representative activation functions, including ReLU, Sigmoid, Tanh, leaky ReLU, and ELU. The
bound propagation for Sigmoid and Tanh is based on the SOTA approaches CROWN [Weng et al.
2018; Zhang et al. 2018] and DeepPoly [Singh et al. 2019b]. NNVERIF integrates the SOTA multi-
neuron framework PRIMA [Miiller et al. 2022] with a neuron grouping strategy. It is implemented
as a multiple-staged verifier and attempts to verify a sample with 1) bound propagation, 2) linear
programming with single-neuron constraints, and 3) multi-neuron constraints. Because the multi-
neuron constraints have a large number, NNVERIF adapts lazy constraints addition [Pearce 2019],
i.e., it only adds the multi-neuron constraints that contribute to the objective function. We also
accept an early-stop setting if the range over-approximated by the bound propagation is too large
to be further tightened by linear programming.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 308. Publication date: October 2025.

Convex Hull Approximation for Activation Functions 308:21

5.2.2 Experiment Settings. This section provides the evaluation metrics, benchmarks, and baselines.
Evaluation metrics. We assess the performance of all methods in verifying local robustness under
a specified I, perturbation. For each network, we define a specific € perturbation radius (details
in Appendix B.2.3). Two key metrics are used to assess the overall performance, i.e., 1) #Verified,
the number of verified samples within the first 100 correctly classified samples of the test dataset,
and 2) Time, the total runtime of verification. These metrics provide valuable insights into the
verification process’s effectiveness and efficiency.

Benchmarks. We conduct experiments using diverse network architectures, including fully-
connected networks (FCN), convolutional networks (CNN), and residual networks (ResNet) trained
on the MNIST and CIFAR10 datasets. The activation functions of these networks include Sigmoid,
Tanh, leaky ReLU, ELU, and MaxPool. Six benchmarks are from PRIMA [Miiller et al. 2022], which
include one fully-connected network (FCN-deep) and one convolutional network (CNN-base)
equipped with Sigmoid and Tanh activation functions, and two MaxPool networks. These networks
undergo training on the MNIST [Deng 2012] and CIFAR10 [Krizhevsky and Hinton 2009] datasets.
Additionally, we expand our experiments to include other networks such as FCN-base and CNN-
deep. Also, we train 8 networks using leaky ReLU and ELU activation functions, employing the
same settings as those used for Sigmoid and Tanh functions. All the above networks are trained
with normal training settings. To demonstrate the scalability of NNVERIF, we introduce two
large-scale ResNets trained by adversarial examples generated by the fast gradient sign method
(FGSM) [Goodfellow et al. 2015], with an adversarial radius of 1/255. Table 10 in Appendix B.2
presents the network architecture in Section 5.2. The structures of all benchmarks achieve the
SOTA level with different activation functions, like in recent studies [Ma et al. 2024; Muller et al.
2022; Wang et al. 2021; Zhang et al. 2022a, 2018].

Baselines. We perform a comparative analysis of NNVERIF against single-neuron and multi-neuron
approximate approaches. We choose two representative single-neuron approaches, CROWN [Weng
et al. 2018; Zhang et al. 2018] and DeepPoly [Singh et al. 2019b], and one SOTA multi-neuron
approach, PRIMA [Miller et al. 2022].

Multi-neuron settings. NNVERIF employs the neuron grouping strategy, consistent with PRIMA
[Miller et al. 2022]. This strategy involves combining neurons within the same layer into smaller
groups. Specifically, we flatten the convolutional layer and group all neurons, and we take the
inputs from the same MaxPool as a group. Three hyperparameters are used: ng, k, and s. Here, ng is
the size of each partition, k is the input dimension of each group within each partition, and s is the
maximum overlapping size between any two groups. We set ng = 50, k =4, and s = 1.

5.2.3 Experiment Results. This section presents the benchmark evaluation of Sigmoid and Tanh
between NNVERIF and other SOTA verifiers (DeepPoly, CROWN, and PRIMA), the extended
evaluation on leaky ReLU and ELU, and scalability evaluation on large-scale residual networks.

Results on Sigmoid and Tanh. Table 5 showcases the performance of various approaches on
Sigmoid and Tanh. NNVERIFpeeppoly+MN 1S @ bound propagation based on DeepPoly with linear
programming of multi-neuron constraints. NNVERIFcrowN+MmN is similar but based on vanilla
CROWN. NNVERIFcrowN+MN demonstrates superior performance over its DeepPoly-based coun-
terpart, achieving higher numbers of verified samples with tighter precision and reduced runtime,
owing to tighter single neuron constraints from CROWN. In terms of the number of verified
samples, NNVERIF verifies up to 69 more samples than DeepPoly, 62 more than PRIMA, and 60
more than CROWN. Furthermore, compared to the SOTA multi-neuron verifier PRIMA, we ob-
serve improvements in runtime reduction with a 10X-40X faster runtime. Note that because the
calculation of multi-neuron constraints has a small proportion of the total verification time, the
runtime reduction of the whole verification process is smaller than the calculation in Section 5.1.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 308. Publication date: October 2025.

308:22 Zhongkui Ma, Zihan Wang, and Guangdong Bai

Table 5. Performance of local robustness verification enhanced by multi-neuron constraints on SOTA bench-
marks.

Dataset Activation Network DeepPoly PRIMA NNVERIFpeepPoly+MN CROWN NNVERIFCROWN+MN
Function #Verified Time (s) #Verified Time(s) #Verified Time(s) #Verified Time(s) #Verified Time /(s)

FCN - base 5 310.40 11 36717.69 46 2138.22 19 35.26 61 2855.09

Sigmoid FCN - deep 16 1107.87 16 78022.67 43 6121.96 11 74.85 69 3976.76

CNN - base 21 547.89 21 42069.53 36 3307.86 37 102.07 40 3598.75

CNN - wide 13 471.80 - - 58 6414.02 33 84.00 69 5019.85

MNIST FCN - base 8 352.46 9 33220.65 71 1218.81 55 100.91 76 544.23
Tanh FCN - deep 10 1328.27 10 96568.91 11 179.80 1 234.66 42 602.26

CNN - base 11 617.63 25 49998.96 50 3085.32 49 159.95 57 2730.30

CNN - wide 16 615.39 16 36450.33 42 2715.70 18 100.40 50 2429.59

MaxPool CNN -pool 38 864.261 43 5764.36 40 1128.46 15 4581 40 880.80

FCN - base 12 872.68 26 63825.99 81 3494.90 39 36.81 74 1756.03

Sigmoid FCN - deep 12 2326.76 12 165181.21 32 4692.58 0 80.50 58 441435

CNN - base 24 853.16 - - 41 4407.01 43 108.70 50 3607.57

CNN - wide 23 866.94 - - 66 6152.96 5 92.54 57 5065.96

CIFAR10 FCN - base 25 838.57 42 45407.74 78 950.59 72 99.86 76 195.15
Tanh FCN - deep 4 2582.25 11 99343.96 16 543.53 2 24040 53 1487.03

CNN - base 0 1034.79 6 68964.61 33 3623.36 46 160.67 59 2609.55

CNN - wide 5 958.78 - - 52 5517.69 0 129.35 60 3828.50

MaxPool CNN -pool 5 7841.48 6 79978.48 6 7820.28 1 24488 5 4754.13

-” indicates that the experiment exceeded the 48-hour time limit due to efficiency considerations.

Table 6. Performance of local robustness verification enhanced by multi-neuron constraints on various
functions.

MNIST CIFAR10
Activation
Functi Network NNVERIFgp NNVERIFgpssn NNVERIFgpyMmN NNVERIFgp NNVERIFgpssn NNVERIFRp MmN
unction
#Verified Time (s) #Verified Time (s) #Verified Time (s) #Verified Time (s) #Verified Time (s) #Verified Time (s)
FCN - base 13 8.23 13 158.71 21 416.08 16 9.39 17 350.17 38 1815.58
FCN - deep 18 23.84 18 188.55 27 632.06 13 27.52 13 182.44 17 533.24
Leaky ReLU CNN - base 59 86.22 59 337.11 89 2342.98 4 199.23 4 364.96 7 567.73
CNN - wide 77 89.43 77 244.30 91 1395.45 8 203.76 8 818.24 24 1950.57
FCN - base 51 3327 51 146.28 77 650.65 54 31.00 54 219.46 55 501.90
FCN - deep 58 60.00 58 338.97 67 933.66 34 71.55 34 495.75 43 1943.57
ELU CNN-base 20 116.99 20 820.50 30 2941.16 18 209.57 18 1516.15 18 2020.42
CNN - wide 32 116.44 32 734.77 43 2859.27 31 193.56 31 1150.41 32 1978.94

Results on leaky ReLU and ELU. The extended evaluation of leaky ReLU and ELU compares
results from pure bound propagation (BP) and propagation combined with linear programming for
single-neuron constraints (BP+SN) or multi-neuron constraints (BP+MN). As shown in Table 6, the
use of multi-neuron constraints consistently enhances performance. With the leaky ReLU function,
we observe an improvement of 3-30 verified examples compared to both pure BP and BP+SN.
Similarly, for the ELU function, there is an improvement of up to 16 verified examples over pure
BP and BP+SN. This modest gain compared to S-shaped functions is due to the relatively simple
geometric characteristics of ReLU-like functions.

Table 7. Scalability evaluation of local robustness verification on ResNets.

Net N Activation NNVERIFgp NNVERIFppssn NNVERIFgpivN
etwor! .

Function #Verified Time (s) #Verified Time (s) #Verified Time (s)

Tanh ResNet-base 4 1248 4 1269.88 5 1579.74

ResNet-deep 0 81.10 0 8143 0 8149

ResNet-base 54 1241 54 259.45 57 445.82

Leaky ReLU p o <Net-deep 12 8147 12 460.22 12 46181

ELU ResNet-base 85 12.53 85 131.27 87 228.67

ResNet-deep 46 81.70 46 430.80 46 485.20

Results on large-scale networks. Table 7 presents the scalability evaluation of ResNet, conducted
in a GPU-based experimental setup. This evaluation involves multiple verification phases, so a

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 308. Publication date: October 2025.

Convex Hull Approximation for Activation Functions 308:23

higher number of samples verified through bound propagation results in fewer samples verified
using linear programming. Given that the ResNets in our setup have up to 10 hidden layers, the
bound propagation approach introduces an unavoidable over-approximation, limiting the potential
refinement offered by multi-neuron constraints. However, since the computation of multi-neuron
constraints is independent of layers, the overall runtime remains reasonable, demonstrating the
scalability of WRAACT on large-scale networks. A better exploitation of multi-neuron remains an
open future work.

6 Related Work
6.1 Convex Hull and Its Approximation

The convex hull problem involves constructing the minimal set of halfspaces whose intersection
forms the convex hull encapsulating a given finite set of points. Convex hull algorithms are broadly
categorized into two types: pivoting algorithms, which consider all vertices or faces simultaneously,
and incremental algorithms, which iteratively process vertices or faces.

Several algorithms are built on Dantzig’s simplex method. For instance, the reverse search
technique [Avis and Fukuda 1991, 1992] applies the simplex method in reverse, while Balinski’s
algorithm [Balinski 1961] enumerates vertices facet by facet. Additionally, the gift wrapping
algorithm [Chand and Kapur 1970] leverages the property that neighboring facets share lower-
dimensional faces. Incremental algorithms, such as the Quickhull algorithm [Barber et al. 1996],
construct the convex hull by processing one point at a time. The double description method [Fukuda
and Prodon 1995; Motzkin et al. 1953] simultaneously considers the primal and dual spaces.

In the context of neural network verification, convex hull algorithms have been tailored to
construct multi-neuron constraints. An expedient and effective approximate method WrRaLU [Ma
et al. 2024] treats linear pieces of ReLU functions as known lower faces. It swiftly constructs new
upper faces adjacent to these lower ones, leveraging the fact that one (n—1)-dimensional hyperplane
and one point determine an n-dimensional hyperplane, and this approach ensures rapid computation
and maintains a stable number of constraints. Another approach [Miiller et al. 2022; Singh et al.
2019a] involves decomposing orthants based on the piecewise linearity property of the ReLU
function to obtain vertices. This method, available in both versions of exact SBLM+DDM [Singh et al.
2019a] and approximate SBLM+PDDM [Miiller et al. 2022], applies convex hull or approximation
algorithms. OptC2V [Tjandraatmadja et al. 2020] exploits the submodularity and convexity of
ReLU hulls. These methodologies rely on the piecewise linearity of the ReLU function. While some
approaches may extend to Sigmoid and Tanh functions [Miller et al. 2022], they prove inefficient
without specifically considering the properties of these functions.

6.2 Approaches of Neural Network Verification

Neural network verification has spawned many studies that have included exact and approximate
approaches. Exact approaches are only applicable to linear piecewise functions such as ReLU and
MaxPool functions by considering each linear piece [Bunel et al. 2020, 2018; Cheng et al. 2017;
Dutta et al. 2018; Ferrari et al. 2021; Katz et al. 2017, 2019; Lomuscio and Maganti 2017; Tjeng et al.
2018; Wang et al. 2021].

Approximate methods offer greater speed and efficiency, and can be extended to a wider range
of activation functions including Sigmoid, Tanh, leaky ReLU, and ELU by constructing linear con-
straints for bound propagation [Paulsen and Wang 2022; Singh et al. 2019b; Weng et al. 2018; Zhang
et al. 2018, 2022b] and linear programming [Ferrari et al. 2021; Gehr et al. 2018; Ko et al. 2019; Ma
et al. 2024; Miiller et al. 2022; Ryou et al. 2021; Singh et al. 2019a; Xu et al. 2022]. Other methods uti-
lize star sets [Tran et al. 2023] and sparse polynomial optimization [Newton and Papachristodoulou

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 308. Publication date: October 2025.

308:24 Zhongkui Ma, Zihan Wang, and Guangdong Bai

2021, 2023] to over-approximate the function hulls for general activation functions, but they have
limited scalability for large-scale networks and require specific prerequisites.

However, most existing approaches focus on single-neuron constraints of general activation
functions [Boopathy et al. 2019; Henriksen and Lomuscio 2020; Paterson et al. 2021; Paulsen and
Wang 2022; Shi et al. 2023; Singh et al. 2018, 2019b; Zhang et al. 2018, 2022b], and only a few consider
multi-neuron constraints [Miiller et al. 2022], which only consider Sigmoid and Tanh functions
and are not specifically designed for general functions. This work concentrates on constructing
function hull approximations for activation functions.

7 Conclusion

In summary, our novel approach, WRaAcT, addresses the challenge of verifying neural networks
using general activation functions by constructing tight function hull over-approximations. Lever-
aging linear constraints to smooth curve fluctuations, WRAAcCT achieves superior efficiency and
precision compared to existing techniques. We pioneer the integration of ELU and leaky ReLU
functions within this framework. The evaluation demonstrates its significant impact through en-
hanced performance by integrating WRAACT into our verifier NNVERIF, with more verified samples
and reduced runtime. This advancement bolsters the reliability and efficiency of neural network
verification methodologies.

Acknowledgment

We thank our anonymous reviewers for their constructive comments. This work is partially
supported by UQ-IITD Research Academy and Australian Research Council Discovery Projects
(DP230101196, DP240103068).

Data Availability Statement
The source code of WRAACT is available at https://github.com/Trusted-System-Lab/WraAct.

References

David Avis and Komei Fukuda. 1991. A basis enumeration algorithm for linear systems with geometric applications. Applied
Mathematics Letters 4, 5 (1991), 39-42. doi:10.1016/0893-9659(91)90141-h

David Avis and Komei Fukuda. 1992. A pivoting algorithm for convex hulls and vertex enumeration of arrangements and
polyhedra. Discrete & Computational Geometry 8 (1992), 295-313. doi:10.1007/bf02293050

M. L. Balinski. 1961. An algorithm for finding all vertices of convex polyhedral sets. 7. Soc. Indust. Appl. Math. 9, 1 (March
1961), 72-88. do0i:10.1137/0109008

C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. 1996. The quickhull algorithm for convex hulls. ACM
Transactions on Mathematical Software (TOMS) 22, 4 (1996), 469-483. doi:10.1145/235815.235821

Akhilan Boopathy, Tsui-Wei Weng, Pin-Yu Chen, Sijia Liu, and Luca Daniel. 2019. CNN-Cert: An efficient framework for
certifying robustness of convolutional neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 33. 3240-3247.

Rudy Bunel, P. Mudigonda, Ilker Turkaslan, Philip Torr, Jingyue Lu, and Pushmeet Kohli. 2020. Branch and bound for
piecewise linear neural network verification. Journal of Machine Learning Research (JMLR) 21 (2020).

Rudy Bunel, Ilker Turkaslan, Philip HS Torr, Pushmeet Kohli, and M. Pawan Kumar. 2018. A unified view of piecewise linear
neural network verification. Advances in Neural Information Processing Systems (NeurIPS) (2018), 4795-4804.

Yulong Cao, Ningfei Wang, Chaowei Xiao, Dawei Yang, Jin Fang, Ruigang Yang, Qi Alfred Chen, Mingyan Liu, and Bo Li.
2021. Invisible for both camera and LiDAR: Security of multi-sensor fusion based perception in autonomous driving under
physical-world attacks. In IEEE Symposium on Security and Privacy (S&P). IEEE, 176-194. doi:10.1109/sp40001.2021.00076

Nicholas Carlini and David Wagner. 2017. Towards evaluating the robustness of neural networks. In IEEE Symposium on
Security and Privacy (S&P). IEEE, 39-57. d0i:10.1109/sp.2017.49

Donald R. Chand and Sham S. Kapur. 1970. An algorithm for convex polytopes. Journal of the ACM (JACM) 17, 1 (1970),
78-86.

Chih-Hong Cheng, Georg Nithrenberg, and Harald Ruess. 2017. Maximum resilience of artificial neural networks. In
International Symposium on Automated Technology for Verification and Analysis (ATVA). Springer, 251-268.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 308. Publication date: October 2025.

https://github.com/Trusted-System-Lab/WraAct
https://doi.org/10.1016/0893-9659(91)90141-h
https://doi.org/10.1007/bf02293050
https://doi.org/10.1137/0109008
https://doi.org/10.1145/235815.235821
https://doi.org/10.1109/sp40001.2021.00076
https://doi.org/10.1109/sp.2017.49

Convex Hull Approximation for Activation Functions 308:25

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. 2016. Fast and accurate deep network learning by exponential
linear units (ELUs). doi:10.48550/arXiv.1511.07289

Li Deng. 2012. The mnist database of handwritten digit images for machine learning research. IEEE Signal Processing
Magazine 29, 6 (2012), 141-142. doi:10.1109/msp.2012.2211477

Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. 2018. Output Range Analysis for Deep
Feedforward Neural Networks. In NASA Formal Methods. Vol. 10811. Springer International Publishing, Cham, 121-138.
doi:10.1007/978-3-319-77935-59 Series Title: Lecture Notes in Computer Science.

Ruediger Ehlers. 2017. Formal verification of piece-wise linear feed-forward neural networks. In International Symposium
on Automated Technology for Verification and Analysis (ATVA). Springer, 269-286. doi:10.1007/978-3-319-68167-219
Xinguo Feng, Zhongkui Ma, Zihan Wang, Eu Joe Chegne, Mengyao Ma, Alsharif Abuadbba, and Guangdong Bai. 2024.
Uncovering Gradient Inversion Risks in Practical Language Model Training. In Proceedings of the on ACM SIGSAC
Conference on Computer and Communications Security (CCS). ACM, Salt Lake City, UT, USA, 3525-3539. doi:10.1145/

3658644.3690292

Claudio Ferrari, Mark Niklas Mueller, Nikola Jovanovi¢, and Martin Vechev. 2021. Complete verification via multi-neuron
relaxation guided branch-and-bound. In The International Conference on Learning Representations (ICLR).

Komei Fukuda and Alain Prodon. 1995. Double description method revisited. In Franco-Japanese and Franco-Chinese
Conference on Combinatorics and Computer Science. Springer, 91-111.

Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Martin Vechev. 2018. Al2:
Safety and robustness certification of neural networks with abstract interpretation. In IEEE Symposium on Security and
Privacy (S&P). IEEE, 3-18. doi:10.1109/sp.2018.00058

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. Deep sparse rectifier neural networks. In Proceedings of the
International Conference on Artificial Intelligence and Statistics (AISTATS). JMLR Workshop and Conference Proceedings,
315-323.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and harnessing adversarial examples.
doi:10.48550/arXiv.1412.6572

Gurobi Optimization, LLC. 2023. Gurobi Optimizer Reference Manual. https://www.gurobi.com

Charles R. Harris, K. Jarrod Millman, Stéfan J. Van Der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser,
Julian Taylor, Sebastian Berg, and Nathaniel J. Smith. 2020. Array programming with NumPy. Nature 585, 7825 (2020),
357-362.

Dan Hendrycks and Kevin Gimpel. 2023. Gaussian error linear units (GELUs). doi:10.48550/arXiv.1606.08415

Patrick Henriksen and Alessio Lomuscio. 2020. Efficient neural network verification via adaptive refinement and adversarial
search. In European Conference on Artificial Intelligence (ECAI). IOS Press, 2513-2520.

Geoffrey Hinton, Li Deng, Dong Yu, George E. Dahl, Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Senior, Vincent
Vanhoucke, Patrick Nguyen, and Tara N. Sainath. 2012. Deep neural networks for acoustic modeling in speech recognition:
The shared views of four research groups. IEEE Signal Processing Magazine 29, 6 (2012), 82-97.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming
Pang, and Vijay Vasudevan. 2019. Searching for MobileNetV3. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 1314-1324.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, and
Hartwig Adam. 2017. MobileNets: Efficient convolutional neural networks for mobile vision applications. doi:10.48550/
arXiv.1704.04861

Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. 2017. Reluplex: An efficient SMT solver
for verifying deep neural networks. In International Conference on Computer-Aided Verification (CAV). Springer, 97-117.
d0i:10.1007/978-3-319-63387-95

Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel Lim, Parth Shah, Shantanu Thakoor,
Haoze Wu, and Aleksandar Zelji¢. 2019. The Marabou framework for verification and analysis of deep neural networks.
In International Conference on Computer-Aided Verification (CAV). Springer, 443-452. doi:10.1007/978-3-030-25540-426

Ching-Yun Ko, Zhaoyang Lyu, Lily Weng, Luca Daniel, Ngai Wong, and Dahua Lin. 2019. POPQORN: Quantifying robustness
of recurrent neural networks. In Proceedings of the International Conference on Machine Learning (ICML). PMLR, 3468—
34717.

Alex Krizhevsky and Geoffrey Hinton. 2009. Learning multiple layers of features from tiny images. (2009).

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. Imagenet classification with deep convolutional neural
networks. Advances in Neural Information Processing Systems (NeurIPS) 25 (2012).

Linyi Li, Tao Xie, and Bo Li. 2023. SoK: Certified robustness for deep neural networks. In IEEE Symposium on Security and
Privacy (S&P). IEEE, 94-115. doi:10.1109/sp46215.2023.10179303

Alessio Lomuscio and Lalit Maganti. 2017. An approach to reachability analysis for feed-forward ReLU neural networks.
doi:10.48550/arXiv.1706.07351

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 308. Publication date: October 2025.

https://doi.org/10.48550/arXiv.1511.07289
https://doi.org/10.1109/msp.2012.2211477
https://doi.org/10.1007/978-3-319-77935-5_9
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1145/3658644.3690292
https://doi.org/10.1145/3658644.3690292
https://doi.org/10.1109/sp.2018.00058
https://doi.org/10.48550/arXiv.1412.6572
https://www.gurobi.com
https://doi.org/10.48550/arXiv.1606.08415
https://doi.org/10.48550/arXiv.1704.04861
https://doi.org/10.48550/arXiv.1704.04861
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1109/sp46215.2023.10179303
https://doi.org/10.48550/arXiv.1706.07351

308:26 Zhongkui Ma, Zihan Wang, and Guangdong Bai

Zhongkui Ma. 2023. Verifying Neural Networks by Approximating Convex Hulls. In Formal Methods and Software Engineering.
Vol. 14308. Springer Nature Singapore, Singapore, 261-266. doi:10.1007/978-981-99-7584-6,7 Series Title: Lecture Notes
in Computer Science.

Zhongkui Ma, Xinguo Feng, Zihan Wang, Shuofeng Liu, Mengyao Ma, Hao Guan, and Mark Huasong Meng. 2023. Formalizing
Robustness Against Character-Level Perturbations for Neural Network Language Models. In Formal Methods and Software
Engineering. Vol. 14308. Springer Nature Singapore, Singapore, 100-117. doi:10.1007/978-981-99-7584-6;7 Series Title:
Lecture Notes in Computer Science.

Zhongkui Ma, Jiaying Li, and Guangdong Bai. 2024. ReLU Hull Approximation. Proceedings of the ACM on Programming
Languages 8, POPL (2024), 2260-2287. doi:10.1145/3632917

Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. 2013. Rectifier nonlinearities improve neural network acoustic
models. In Proceedings of the International Conference on Machine Learning (ICML), Vol. 30. PMLR, 3.

Mark Huasong Meng, Guangdong Bai, Sin Gee Teo, Zhe Hou, Yan Xiao, Yun Lin, and Jin Song Dong. 2022. Adversarial
robustness of deep neural networks: A survey from a formal verification perspective. IEEE Transactions on Dependable
and Secure Computing (2022).

Theodore S. Motzkin, Howard Raiffa, Gerald L. Thompson, and Robert M. Thrall. 1953. The Double Description Method. In
Contributions to the Theory of Games. Vol. 2. 51-74.

Mark Niklas Miiller, Gleb Makarchuk, Gagandeep Singh, Markus Piischel, and Martin Vechev. 2022. PRIMA: general and
precise neural network certification via scalable convex hull approximations. Proceedings of the ACM on Programming
Languages 6, POPL (2022), 1-33. do0i:10.1145/3498704

Matthew Newton and Antonis Papachristodoulou. 2021. Neural network verification using polynomial optimisation. In
Conference on Decision and Control (CDC). IEEE, 5092-5097.

Matthew Newton and Antonis Papachristodoulou. 2023. Sparse polynomial optimisation for neural network verification.
Automatica 157 (2023), 111233.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin,
Natalia Gimelshein, and Luca Antiga. 2019. Pytorch: An imperative style, high-performance deep learning library.
Advances in Neural Information Processing Systems (NeurIPS) 32 (2019).

Colin Paterson, Haoze Wu, John Grese, Radu Calinescu, Corina S. Pasireanu, and Clark Barrett. 2021. DeepCert: Verification
of contextually relevant robustness for neural network image classifiers. In Computer Safety, Reliability, and Security:
40th International Conference (SAFECOMP). Springer, 3-17.

Brandon Paulsen and Chao Wang. 2022. LinSyn: Synthesizing tight linear bounds for arbitrary neural network activation
functions. In International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
Springer, 357-376.

Robin Harris Pearce. 2019. Towards a general formulation of lazy constraints. Ph.D. Dissertation. The University of
Queensland.

Wonryong Ryou, Jiayu Chen, Mislav Balunovic, Gagandeep Singh, Andrei Dan, and Martin Vechev. 2021. Scalable polyhedral
berification of recurrent neural networks. In International Conference on Computer-Aided Verification (CAV). Springer,
225-248. doi:10.1007/978-3-030-81685-8;0

Hadi Salman, Greg Yang, Huan Zhang, Cho-Jui Hsieh, and Pengchuan Zhang. 2019. A convex relaxation barrier to
tight robustness verification of neural networks. Advances in Neural Information Processing Systems (NeurIPS) (2019),
9835-9846.

Zhouxing Shi, Qirui Jin, Huan Zhang, Zico Kolter, Suman Jana, and Cho-Jui Hsieh. 2023. Formal verification for neural
networks with general nonlinearities via branch-and-bound. In Workshop on Formal Verification of Machine Learning
(WFVML).

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian Schrittwieser,
Ioannis Antonoglou, Veda Panneershelvam, and Marc Lanctot. 2016. Mastering the game of Go with deep neural networks
and tree search. Nature 529, 7587 (2016), 484-489.

Gagandeep Singh, Rupanshu Ganvir, Markus Piischel, and Martin Vechev. 2019a. Beyond the single neuron convex barrier
for neural network certification. Advances in Neural Information Processing Systems (NeurIPS) 32 (2019).

Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Piischel, and Martin Vechev. 2018. Fast and effective robustness
certification. Advances in Neural Information Processing Systems (NeurIPS) 31 (2018).

Gagandeep Singh, Timon Gehr, Markus Piischel, and Martin Vechev. 2019b. An abstract domain for certifying neural
networks. Proceedings of the ACM on Programming Languages 3, POPL (2019), 1-30. doi:10.1145/3290354

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to sequence learning with neural networks. Advances in
Neural Information Processing Systems (NeurIPS) 27 (2014).

Christian Tjandraatmadja, Ross Anderson, Joey Huchette, Will Ma, Krunal Kishor Patel, and Juan Pablo Vielma. 2020. The
convex relaxation barrier, revisited: Tightened single-neuron relaxations for neural network verification. Advances in
Neural Information Processing Systems (NeurIPS) 33 (2020), 21675-21686.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 308. Publication date: October 2025.

https://doi.org/10.1007/978-981-99-7584-6_17
https://doi.org/10.1007/978-981-99-7584-6_7
https://doi.org/10.1145/3632917
https://doi.org/10.1145/3498704
https://doi.org/10.1007/978-3-030-81685-8_10
https://doi.org/10.1145/3290354

Convex Hull Approximation for Activation Functions 308:27

Vincent Tjeng, Kai Y. Xiao, and Russ Tedrake. 2018. Evaluating robustness of neural networks with mixed integer
programming. In The International Conference on Learning Representations (ICLR).

Hoang Dung Tran, Sung Woo Choi, Xiaodong Yang, Tomoya Yamaguchi, Bardh Hoxha, and Danil Prokhorov. 2023. Verifica-
tion of recurrent neural networks with star reachability. In International Conference on Hybrid Systems: Computation and
Control (HSCC). ACM, San Antonio TX USA, 1-13. doi:10.1145/3575870.3587128

Matthias Troffaes. 2018. pycddlib: Python wrapper for Komei Fukuda’s cddlib. https://pypi.org/project/pycddlib/

Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J. Zico Kolter. 2021. Beta-CROWN: Efficient
bound propagation with per-neuron split constraints for neural network robustness verification. Advances in Neural
Information Processing Systems (NeurIPS) 34 (2021), 29909-29921.

Zihan Wang, Zhongkui Ma, Xinguo Feng, Zhiyang Mei, Ethan Ma, Derui Wang, Minhui Xue, and Guangdong Bai. 2025. Al
Model Modulation with Logits Redistribution. In Proceedings of the ACM on Web Conference 2025. ACM, Sydney NSW
Australia, 4699-4709. doi:10.1145/3696410.3714737

Zihan Wang, Zhongkui Ma, Xinguo Feng, Ruoxi Sun, Hu Wang, Minhui Xue, and Guangdong Bai. 2024. Corelocker:
Neuron-level usage control. In IEEE Symposium on Security and Privacy (S&P). IEEE, 2497-2514.

Lily Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca Daniel, Duane Boning, and Inderjit Dhillon. 2018.
Towards fast computation of certified robustness for relu networks. In Proceedings of the International Conference on
Machine Learning (ICML). PMLR, 5276-5285.

Zhiwu Xu, Yazheng Liu, Shengchao Qin, and Zhong Ming. 2022. Output range analysis for feed-forward deep neural
networks via linear programming. IEEE Transactions on Reliability (2022).

Yuchen Yang, Bo Hui, Haolin Yuan, Neil Gong, and Yinzhi Cao. 2024. Sneakyprompt: Jailbreaking text-to-image generative
models. In IEEE Symposium on Security and Privacy (S&P). IEEE, 897-912. doi:10.1109/SP54263.2024.00123

Zhiyuan Yu, Xiaogeng Liu, Shunning Liang, Zach Cameron, Chaowei Xiao, and Ning Zhang. 2024. Don’t Listen To Me:
Understanding and Exploring Jailbreak Prompts of Large Language Models. In USENIX Security Symposium (USENIX
Security). USENIX Association, 4675-4692.

Huan Zhang, Shiqi Wang, Kaidi Xu, Linyi Li, Bo Li, Suman Jana, Cho-Jui Hsieh, and J. Zico Kolter. 2022a. General cutting
planes for bound-propagation-based neural network verification. Advances in Neural Information Processing Systems
(NeurlPS) 35 (2022), 1656-1670.

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. 2018. Efficient neural network robustness
certification with general activation functions. Advances in Neural Information Processing Systems (NeurIPS) 31 (2018),
4944-4953.

Zhaodi Zhang, Yiting Wu, Si Liu, Jing Liu, and Min Zhang. 2022b. Provably tightest linear approximation for robustness
verification of sigmoid-like neural networks. In Proceedings of the IEEE/ACM International Conference on Automated
Software Engineering (ASE). ACM, Rochester MI USA, 1-13. doi:10.1145/3551349.3556907

Appendix
A Details of WRAAcT
A.1 Numerical Results of Running Example

This section presents the calculation details of important variables in Section 3.2. The coefficients
and constants from the real algorithm are rounded for simplicity. The input domain is defined by a
polytope as

N=Ax1+x3> -2, =x1 —x3 > =2, x| — X3 = =2, —x1 + X3 > —2}.
The DLP functions as bounds with the first input dimension and output dimension,
0, (x1) = min{0.22x; +0.52, 0.84x; — 0.04}, 71(x;) = max{0.22x; — 0.52, 0.84x; + 0.04}.
and ones with the second input dimension and output dimension,

0,(x2) = min{0.22x; + 0.52, 0.84x; — 0.04}, T(x2) = max{0.22x; — 0.52, 0.84x; +0.04}.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 308. Publication date: October 2025.

https://doi.org/10.1145/3575870.3587128
https://pypi.org/project/pycddlib/
https://doi.org/10.1145/3696410.3714737
https://doi.org/10.1109/SP54263.2024.00123
https://doi.org/10.1145/3551349.3556907

308:28 Zhongkui Ma, Zihan Wang, and Guangdong Bai

The convex over-approximations of two DLP functions in (x1, x2, y;)-space are

Ml ={ 0.22x1 —y1=>-0.52, Ml ={ -0.22x; +y1> 0.52,
0.84x1 -y1> 0.04, —0.84x1 +11>-0.04,
—X1—X2 +y1=>-2, X1+x2 +y1>2-2,
—3.98x1 +x245.92y1 >—2.26, 3.98x1—x2—-5.92y1 >—2.26,
—x1+x2 +y1>-2, X1—X2 +y1=2-2,
—3.98x1—x2+5.92y1>-2.26 }, 3.98x1+x2—5.92y1>-2.26 }.

The convex over-approximations of two DLP functions in (x3, x2, y1, y2)-space are

M={ 022x -y >-0.52, M={ -0.22x +y1 > 052,
0.84x; —y; > 0.04, —0.84x +y1 >-0.04,
0.22x, —y2>-0.52, —0.22x, +y2> 0.52,
0.84x, —y2> 0.04, —0.84x; +yp>—0.04,
—3.98x1—3.98x2+5.92y1+5.92y,>—2.52, 3.98x1+3.98x2—5.92y1 —5.92y2 >—2.52,
—x1-3.98x, +5.92y2>—2.26, x1+3.98x, —5.9217>—2.26,
—3.98x] —xp+5.92y; >-2.26, 3.98x; +x3—5.92y >-2.26,

—x1 —x3 >-2 L x1 +x9 >-2 .

The over-approximation with multi-neuron constraints of the activation function in (x1, X2, y1, y2)-
space is

Mm ={ —3.98x1-3.98x3+5.92y +5.92y5>—2.52,
3.98x1 +3.98x3—5.92y1 —5.92y9 > —2.52,

—x1—3.98x2 +5.92y2>-2.26,
—3.98x1 —x2+5.92y1 >-2.26,
x1+3.98x2 —5.92y,>-2.26,
3.98x +x2—5.92y1 >-2.26,
—X1 —X2 >-2,
X1 +Xx2 >-2 1.

A.2 Soundness of DLP Over-approximation

2-dimensional Example of Lemma 2. Considering a 2-dimensional example, if we have y =
g(x) = max{—x + 1,2x + 1} in the space of (x, y), we aim to get a linear transformation defined
by a square matrix A € R?*? and a vector o € R? such that A and o transforms the point (x, y)
ony = —x (or y = 2x + 1) to the point (x",y’) ony =0 (ory = x) by (x",y") = A- ((x,y) — 0).
Specifically, the vector o is a translation transformation to translate the intersection of y = 2x + 1
and y = —x to the original and is defined as 0 = (0, 1). Next, we construct V = [_11 %], where the
first column vector (1, —1) is the direction vector of y = —x + 1 and the second column vector (1, 2)
is the direction vector of y = 2x + 1 and V' = [(1) ”, where the first column vector (1, 0) is the
direction vector of y = 0 and the second column vector (1, 1) is the direction vector of y = x. Then,

letA=V'V1i=V [fﬁ _11/33] = [1}3 1(/’3] So, for instance, we can transform (1,3) ony = 2x + 1

to(L,Ll)ony=xby A-((1,3)-0) = A [%] = (1,1); we can transform (-1,2) ony = —x + 1 to
(-,0)ony=0by A-((-1,2) —0) = A [_11] = (—1,0); we can transform (0,4) = (1,4) + (-1,1)
on the coordinate system of line y = —x + 1 and line y = 2x + 1 to (0, 1) on the coordinate system
ofliney=0andy =xby A- ((0,4) — o) =A[g] =(0,1).

4-dimensional Example of Lemma 2. Considering a 4-dimensional example, if we have y =
g(x1) = max{-x; — x2 + 1,2x1; + x2 + 2} in the space of (x1,x, x3,y), we aim to get a linear
transformation defined by a square matrix A € R*** and a vector o € R* transforms the point
(1, x2, X3, y) ony = —x1 —xp+1 (or y = 2x; +x3+2) to the point (x7, x5, x3,y") ony = 0 (or y = x1) by
(x7, x5, x3,y") = A - ((x1, X2, x3,4) — 0). Specifically, to determine the vector o, we need to translate

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 308. Publication date: October 2025.

Convex Hull Approximation for Activation Functions 308:29

the interaction of y = —x; — x; + 1 and y = 2x; + x2 + 2 to crossing the original. Then, we need to

y=—x1—x2+1

find a solution to the equation system { to translate these two planes to { %1, So

y=2x1+x2+2
1100
we set 0 = (-1, 1,0, 1). Next, we construct V = [o ‘1)], where the first column vector (1, 1,0, —2)
2300

is a vector parallel to y = —x; — x; + 1, the second column vector (1, 1,0, 3) is a vector parallel to
y = 2x1 + X + 2 (note that the first two column maintain the measurement of V), and the third

and the fourth column vectors are determined by x,-axis and x3-axis, which makes V invertible.
1100

Let V! = [8 ’s (1)} where the first column vector (1,0, 0,0) is a vector parallel to y = 0 and the
0100

second column vector (1,0, 0, 1) is a vector parallel to y = x;, and the third and the fourth column

vectors are determined by x;-axis and x3-axis, which makes V” invertible. Such V’ will not change

3/500 —1/5 1000
the coordinate values on x, and x3. Further, let A = V'V~! =V’ [2/5 00 1/5] = [el] So,

AR 2/5001/5

0
for instance, we can transform (0, 2, 0,4) on y = 2x; + x; + 2 (note that (0,2,0,4) —o0 = (1,1,0,3) on

1
Yy = 2x1 + %) to (1,0,0,1) ony = x; byA-((0,2,0,4)—0)=A[(1)] =1(1,0,0,1).
3

A.3 Single-neuron Constraints of Activation Functions

Detailed Proof of Lemma 6. The following shows the detailed proof of Lemma 6, showing the
soundness of single neuron constraints for Sigmoid, Tanh, LeakyReLU, and ELU functions.

Proor. We prove each linear constraint is sound to the activation function ¢ in the input domain
X. Each linear constraint determines a linear function. If the linear function value is always less
than the target function value, it determines a lower linear constraint for the target function; it
is symmetrical for the upper constraints. Before diving into the detailed cases, we clarify several
properties of convex/concave functions.

Property 1. @ For a function f(x) and a linear function g(x), if f(x) is convex, i.e, f”/(x) > 0,
within x € [a,b] and g(a) > f(a) and g(b) = f(b), we have g(x) > f(x) and g(x) provides
an upper constraint for f(x). We can prove this by the difference d(x) = g(x) — f(x). Because
d(a) 2 0,d(b) > 0and d”(x) = —f"(x) < 0, we have d(x) is concave. Then, we have d(x) > 0
within x € [a, b] by the definition of concavity. So, we prove f(x) < g(x) within x € [a, b]. ® The
case of a f(x) and a linear function g(x) as the lower bound, such that g(a) < f(a), g(b) < f(b),
and f(x) is concave within x € [a, b], is symmetrical.

Property 2. @ For a function f(x) and a linear function g(x), if f(x) is convex, i.e., f"’(x) > 0,
within x € [a, b] and g(x) is a tangent line of f(x) satisfying g(m) = f(m) and ¢g’(m) = f’'(m),
where m € [a, b], we have g(x) < f(x) and g(x) provides a lower constraint for f(x). We can prove
this by the difference d(x) = f(x) — g(x). Because d”’ (x) = f"’(x) > 0, d(x) is convex. Considering
d(m) = f(m) — g(m) = 0, we have d(x) > 0 within x € [a, b] by the definition of convexity. So, we
prove g(x) < f(x) within x € [a, b]. ® The case of a f(x) and a linear function g(x) as the upper
bound, such that g(m) = f(m), g'(m) = f(m) (m € [a,b]), and f(x) is concave within x € [a, b],
is symmetrical.

Property 3. @ For a function f(x) and a linear function g(x), if f(x) is convex, ie., f”’(x) > 0,
within x € [a, b] and h(x) is a line satisfying h(a) = f(a) and k' (a) < f’(a), we have h(x) < f(x)
and h(x) provides a lower constraint for f(x). This can be proved by setting g(x) in Property 2
such that m = a and h(x) < g(x) < f(x) within x € [a, b]. Similarly, @ for a function f(x) and a
linear function g(x), if f(x) is convex, i.e., f”/(x) > 0, within x € [qa, b] and h(x) is a line satisfying
h(b) = f(b) and ' (b) > f’(b), we have h(x) < f(x) and h(x) provides a lower constraint for f(x).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 308. Publication date: October 2025.

308:30 Zhongkui Ma, Zihan Wang, and Guangdong Bai

Symmetrically, we have that, ® for a function f(x) and a linear function g(x), if f(x) is concave,

ie, f”(x) <0, within x € [a,b] and h(x) is a line satisfying h(a) = f(a) and h’'(a) > f’(a), we

have h(x) > f(x) and h(x) provides a upper constraint for f(x); @ for a function f(x) and a linear
function g(x), if f(x) is concave, ie., f”’(x) < 0, within x € [a, b] and h(x) is a line satisfying

h(a) = f(a) and b’ (b) < f'(b), we have h(x) > f(x) and h(x) provides a upper constraint for

f(x).

For sigmoid and Tanh functions, we have the following cases.

e When o’ (u) > ki, A u < 0, we have o(x) is convex within x € [I, u]. 1) For the upper constraint
y = ki, (x — 1) + (1), it satisfies Property 1-@. 2) For the lower constraint y > o’ (I)(x —) + o(I),
it satisfies Property 2-@. 3) For the lower constraint y > ¢’ (1) (x — u) + o(u), it satisfies Property
2-@. 4) For the lower constraint y > ky, (x — m;) + o(my), it satisfies Property 2-@.

e When ¢’ (u) > kj, A u > 0, we have the following cases. 1) For the upper constraint y =
ki, (x—1)+o(1), it satisfies Property 1-@® when x € [, 0] and satisfies Property 2-@ when x € [0, u].
2) For the lower constraint y > o’(I)(x — I) + o(l), it satisfies Property 2-@® when x € [/, 0]
and satisfies Property 1-8® when x € [0, u]. 3) For the lower constraint y > k;(x — u) + o(u),
it satisfies Property 2-@® when x € [/, 0] and satisfies Property 1-® when x € [0, u]. 4) For the
lower constraint y > ky, (x — my) + o(my), it satisfies Property 2-@ when x € [[, 0] and satisfies
Property 1-® when x € [0, u].

e When o’ (I) = kj, Al > 0, this is a symmetrical case of o’ (u) > kj,, A u < 0 and it can be proved
by the symmetrical center of the Sigmoid or Tanh functions.

e When o’ (l) > kj, Al < 0, this is a symmetrical case of o’ (u) > kj, A u > 0, and it can be proved
by the symmetrical center of the Sigmoid or Tanh functions.

e When kj, > o’(I) A ky, > o’ (u), the lower (or upper) bounds have the same proof of the lower
constraint when ¢’ (u) > kj, Au > 0 (or o’ (u) > kj,, Au > 0).

For a LeakyReLU function, it is a convex function similar to the ReLU function. It has two linear
pieces of y = ax (0 < @ < 1) when x < 0 and y = x when x > 0. We only discuss the nontrivial
case.

e For the upper constraint y > k,,(x — [) + o(l), it satisfies Property 1-@.
e For the lower constraint y > ax, it satisfies Property 2-@.
e For the lower constraint y > x, it satisfies Property 2-@®.

For an ELU function, it is a convex function similar to the ReLU function. It has two pieces of
y =¢e* —1when x < 0 and y = x when x > 0. We only discuss the nontrivial case.

e For the upper constraint y < k,, (x — [) + o(l), it satisfies Property 1-@.

e For the lower constraint y > ¢’ (I)(x — I) + (1), it satisfies Property 2-@.

e For the lower constraint y > o’ (u) (x — u) + o(u), it satisfies Property 2-@.
e For the lower constraint y > ¢’ (m)(x — m) + o(m), it satisfies Property 2-@.

A.4 Discussion of Optimality

WRAACT constructs DLP functions to serve as bounds for the target activation function. The
tighter these DLP bounds approximate the activation function from above and below, the tighter
the resulting function hull over-approximation becomes. To improve efficiency, WRAAcT adopts
an iterative procedure that processes each output dimension separately. This strategy, however,
neglects potential inter-variable constraints that may arise across different iteration orders.

We further analyze the types of constraints that WRAACT cannot capture. For a multi-input
multi-output function, accurately approximating the surface often requires linear faces to tightly

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 308. Publication date: October 2025.

Convex Hull Approximation for Activation Functions 308:31

Table 8. Ablation study of function hull over-approximation by single-neuron method and WRAAcT (Sigmoid,
Tanh, MaxPool, LeakyReLU, and ELU).

Input Sigmoid Tanh MaxPool

Dim. Single-neuron WRaAcT Single-neuron WRaACT Single-neuron WRaACT

Runtime (s)
2 0.000333:£(0.000040) 0.000862::(0.000096) 0.000277+(0.000020) 0.001043(0.001194) 0.000027-+(0.000007) 0.000504(0.001156)

3 0.000456+(0.000030) 0.001960+(0.000264) 0.000383+(0.000015) 0.001894+(0.000084) 0.000026::(0.000005) 0.000397+(0.000032)
4 0.000599+(0.000033) 0.003042+(0.000376) 0.000506+(0.000024) 0.002740+(0.000395) 0.000028+(0.000005) 0.000908+(0.000157)

Estimated Volume

2 0.221187+(0.150489) 0.039445+(0.035453) 0.000904+(0.004827) 0.000508+(0.002732) 0.398086+(0.049817) 0.026968+(0.014586)
3 0.133869+(0.098536) 0.004283+(0.005420) 0.000010+(0.000037) 0.000003+(0.000013) 0.361226+(0.055736) 0.009600-(0.009362)

4 0.042201+(0.042275) 0.000026+(0.000073) 0.000002+(0.000009) - 0.352711+(0.059871) 0.002638+(0.002344)
Number of Constraints
2 11.00+(1.34) 37.60=(0.76) 11.20+(1.22) 37.60=(0.61) 3.00-£(0.00) 16.00£(0.00)
3 16.87+(1.52) 83.80=(0.95) 17.53+(0.85) 83.77+(0.42) 4.00=(0.00) 37.00+(0.00)
4 22.27+(1.77) 202.73+(2.10) 23.13+(1.33) 201.57+(0.67) 5.00(0.00) 94.00+(0.00)
Input LeakyReLU ELU
Dim. Single-neuron WRAACT Single-neuron WRAACT

Runtime (s)

2 0.000040+(0.000009) 0.000473+(0.000493) 0.000068+(0.000008) 0.000564:+(0.000518)
3 0.000040+(0.000007) 0.000670+(0.000045) 0.000070+(0.000008) 0.000726(0.000089)
4 0.000042:+(0.000006) 0.001300+(0.000162) 0.000071+(0.000007) 0.001441+(0.000314)

Estimated Volume

2 0.059564+(0.031370) 0.029496+(0.018156) 0.052095+(0.031948) 0.027033+(0.017319)
3 0.013626+(0.008140) 0.002105+(0.001300) 0.012190+(0.010080) 0.004053+(0.003013)
4 0.003741£(0.002238) 0.000147+(0.000094) 0.002664+(0.001231) 0.000710+(0.000737)

Number of Constraints

2 6.00+(0.00) 19.00+(0.00) 8.00+(0.00) 21.43(0.62)
3 9.00+(0.00) 42.00(0.00) 12.00(0.00) 45.57(0.72)
4 12.00(0.00) 101.00+(0.00) 16.00(0.00) 105.97+(0.87)

-” means that no randomly sampled point drops inside the function hull over-approximation.

“wrap” local non-convex or non-concave (“bowl-like”) shapes. Consider a 4D surface defined as
S = {(x1,x2,y1,y2) | y1 = sigmoid(x;), y, = sigmoid(x,)}. This surface can be partitioned
into four regions: Area @ defined by S N {(x1, x2,y1,y2) | x1 < 0,x, < 0}, Area @ defined by
S N {(x1,%2,y1,42) | x1 £ 0,x3 > 0}, Area ® defined by S N {(x1, x2, y1,y2) | x1 > 0,x2 < 0}, and
Area @ defined by S N {(x1, x2, Y1, y2) | x1 > 0,x, > 0}. Considering, the sigmoid function is convex
within (—oo, 0] and concave within [0, o). Note that the sigmoid function is convex on (—oo, 0]
and concave on [0, 00). In Area @ and Area @, both y; = sigmoid(x;) and y, = sigmoid(x;) share
the same convexity or concavity. However, in Areas @ and @), one of the components is convex
while the other is concave. Because WRAACT handles the upper convex and lower concave DLP
functions independently rather than jointly (in Algorithm 1), it cannot capture constraints that
depend on such locally mixed convex-concave structures.

B Evaluation
B.1 Function Hull Approximation

B.1.1 Ablation Study with Single-neuron Function Hull Approximation. Table 8 shows the ablation
study of function hull over-approximation between the single-neuron method (defined in Table 3)
and WRaACT for Sigmoid, Tanh, LeakyReLU, ELU, and MaxPool functions. The results show that
WRAACT yields high performance on precision (smaller volume up to 200X), although it is compared
to tight single-neuron constraints.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 308. Publication date: October 2025.

308:32 Zhongkui Ma, Zihan Wang, and Guangdong Bai

Table 9. Ablation study of function hull over-approximation by different designs of DLP functions in WRAACT
(Sigmoid, Tanh, ELU, and MaxPool).

Input Sigmoid Tanh
Dim. Design A Design B WRaACT Design A Design B WRaACT
Runtime (s)

2 0.001068+(0.001105) 0.000878+(0.000046) 0.000862+(0.000096) 0.000842+(0.000037) 0.000844+(0.000036) 0.001043+(0.001194)

3 0.001922+(0.000129) 0.001448+(0.000132) 0.001960(0.000264) 0.001454+(0.000060) 0.001453+(0.000054) 0.001894+(0.000084)

4 0.003042+(0.000384) 0.002242+(0.000305) 0.003042+(0.000376) 0.002434+(0.000187) 0.002429+(0.000188) 0.002740+(0.000395)
Estimated Volume

2 0.031486+(0.027081) 0.040257+(0.034297) 0.039445+(0.035453) 0.000477+(0.002562) 0.000529+(0.002843) 0.000508+(0.002732)

3 0.003754+(0.004630) 0.004605+(0.006236) 0.004283+(0.005420) O. 000003+(0 000013) 0. 000003+(0 000011) 0.000003+(0.000013)

4 0.000047+(0.000139) 0.000004+(0.000014) 0.000026+(0.000073) -

Number of Constraints

2 37.60:(0.76) 37.67£(0.75) 37.60:(0.76) 37.60+(0.61) 37.60+(0.61) 37.60+(0.61)
3 83.77+(0.92) 84.07(1.18) 83.80£(0.95) 83.77+(0.42) 83.77+(0.42) 83.77+(0.42)
4 202.47+(1.91) 203.47£(2.29) 202.73£(2.10) 201.57£(0.67) 201.57£(0.67) 201.57£(0.67)
Input ELU MaxPool
Dim. Design A WraAcCT Design A WraAcT
Runtime (s)

2 0.000423+(0.000049) 0.000564+(0.000518) 0.000308+(0.000069) 0.000504+(0.001156)

3 0.000726+(0.000064) 0.000726(0.000089) 0.000411+(0.000032) 0.000397+(0.000032)

4 0.001327+(0.000159) 0.001441+(0.000314) 0.001276+(0.000327) 0.000908-+(0.000157)
Estimated Volume

2 0.026940+(0.021323) 0.027033+(0.017319) 0.026977+(0.014578) 0.026968+(0.014586)

3 0.005645+(0.006581) 0.004053+(0.003013) 0.010827+(0.010236) 0.009600-+(0.009362)

4 0.000654+(0.000621) 0.000710+(0.000737) 0.002472+(0.002191) 0.002638+(0.002344)

Number of Constraints

2 21.43+(0.62) 21.43+(0.62) 16.00=(0.00) 16.00+(0.00)
3 45.40+(0.55) 45.57(0.72) 37.00+(0.00) 37.00+(0.00)
4 105.90+(0.91) 105.97+(0.87) 94.00=+(0.00) 94.00=+(0.00)

« »

-” means that no randomly sampled point drops inside the function hull over-approximation.

B.1.2 Ablation Study with Different Designs of DLP Functions. Table 9 shows the ablation study
of different designs of WRAAcT. We do not further show the ablation study of the LeakyReLU
function, because the split point of the two pieces of the LeakyReLU function is the optimal choice,
as shown in Table 2, which is similar to the ReLU function. We demonstrate one or two different
designs, denoted as Design A and Design B, of DLP functions for Sigmoid and Tanh functions.

e For the S-shaped functions, Design A takes new m; = l+;" L and new mj, = & "2+” where the new
split point m’l (or m],) is more close to the direction to —oco (or co); De51gn B takes new m; = o
and new m;, = ¢, where the new split point m’[(or m;,) is more close to the direction to co (or
—c0).

e For the ELU function, Design A takes new m’ l”" as the split point.

e For the MaxPool function, Design A adopts a dlStInCt grouping strategy for S; and S; (as
discussed in Section 4.1.1), where S; contains the first half of the input variables after sorting

the input variable ranges, and S, contains the remaining ones.

The results show that different designs of DLP functions affect the precision (volume) but have
similar runtime and numbers of constraints in WRAACT, showing its stable performance.

B.2 Neural Network Verification

B.2.1 Experiment Implementation Details. WRAACT is implemented in Python, using Numpy [Har-
ris et al. 2020] and pycddlib [Troffaes 2018] for over-approximating the function hull. NNVERTIF is
implemented in PyTorch [Paszke et al. 2019] for bound propagation and Gurobi [Gurobi Optimiza-
tion, LLC 2023] for linear programming. Unless otherwise specified, experiments are conducted
without GPU acceleration. All reported CPU experiments are conducted on a workstation equipped

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 308. Publication date: October 2025.

Convex Hull Approximation for Activation Functions 308:33

Table 10. Network architectures of benchmarks.

Network Architecture

MNIST-FCN-base (1500 neurons, 3 hidden layers):

FC(784, 500) - FC(500, 500) - FC(500, 500) - FC(500, 10)
MNIST-FCN-deep (3000 neurons, 6 hidden layers):

FC(784, 500) - FC(500, 500) - FC(500, 500) - FC(500, 500) - FC(500, 500) - FC(500, 500) - FC(500, 10)
MNIST-CNN-base (5604 neurons, 4 hidden layers):

CONV(16,3, 4, 1, 1, 2) - CONV(32, 16, 4, 1, 1, 2) - FC(1568, 800) - FC(800, 100) - FC(100, 10)
MNIST-CNN-wide (5704 neurons, 3 hidden layers):

CONV(16, 3, 4, 1, 1, 2) - CONV(32, 16, 4, 1, 1, 2) - FC(1568, 1000) - FC(100, 10)
MNIST-CNN-pool (28004 neurons and 9 hidden layers):

CONV(3, 8,3, 1,0, 1) - CONV(8, 8, 3, 1, 0, 1) - MAXPOOL(2, 0, 2) - CONV(14, 32,3, 1,0, 1) -

CONV(14, 14, 3, 1, 0, 1) - MAXPOOL(2, 0, 2) - FC(224, 50) - FC(50, 50) - FC(50, 10)
CIFAR10-FCN-base (1500 neurons and 3 hidden layers):

FC(3072, 500) - FC(500, 500) - FC(500, 500) - FC(500, 10)
CIFAR10-FCN-deep (3000 neurons and 6 hidden layers):

FC(3072, 500) - FC(500, 500) - FC(500, 500) - FC(500, 500) - FC(500, 500) - FC(500, 500) - FC(500, 10)
CIFAR10-CNN-base (7044 neurons and 4 hidden layers):

CONV(16,3, 4, 1, 1, 2) - CONV(32, 16, 4, 1, 1, 2) - FC(1152, 100) - FC(800, 100) - FC(100, 10)
CIFAR10-CNN-wide (7144 neurons and 3 hidden layers):

CONV(16, 3, 4, 1, 1, 2) - CONV(32, 16, 4, 1, 1, 2) - FC(2048, 1000) - FC(100, 10)
CIFAR10-CNN-pool (109312 neurons and 9 hidden layers):

CONV(3, 24,3, 1,0, 1) - CONV(24, 24, 3, 1, 0, 1) - MAXPOOL(2, 0, 2) - CONV(24, 32,3, 1, 0, 1) -

CONV(32, 32,3, 1,0, 1) - MAXPOOL(2, 0, 2) - FC(800, 100) - FC(100, 100) - FC(100, 10)
CIFAR10-ResNet-base (9316 neurons and 6 hidden layers):

CONV(3, 8, 3, 1, 1, 2) - ResBlock(8, 16) - ResBlock(16, 16)- FC(1024, 100) - FC(100, 10)
CIFAR10-ResNet-deep (22116 neurons and 10 hidden layers):

CONV(3, 16, 3, 1, 1, 2) - ResBlock(16, 32) - ResBlock(32, 32) - ResBlock(32, 32) - ResBlock(32, 32) - FC(512, 100) - FC(100, 10)

T FCN and CNN refer to the fully-connected and convolutional neural network, respectively. The MaxPool neural networks use
ReLU as the unary activation function. ¥ CONV(-) refers to a convolutional layer with the specific input channel, output channel,
kernel size, dilation, padding, and stride by ordering. The parameters of FC(:) refer to a fully-connected layer with the specific input
dimension and output dimension. MAXPOOL(:) refers to a MaxPool layer with a specific kernel size, padding, and stride. ResBlock(-)
refers to a residual block with the input channels and output channels. Specifically, A ResBlock has two settings. One is of two paths,
one consists of CONV(input channels, output channels, 3, 1, 0, 2) and one is CONV(input channels, output channels, 3, 1, 1, 1) - Act -
CONV(output channels, output channels, 3, 1, 1, 2), where Act block is the activation layer. Another setting is of two paths, but the
first path has only a direct link without CONV block.

with 20 AMD EPYC 7702P 64-Cores 2.00GHz CPUs with 100G of the main memory. GPU experi-
ments on a workstation with 48 AMD Ryzen Threadripper PRO 5965WX 24-Cores 4.5GHz CPUs
with one NVIDIA RTX A6000 GPU and 252G of the main memory.

B.2.2 Network Benchmarks. Table 10 presents the

. . . Table 11. Benchmarks of neural network verifica-
network architecture in Section 5.2.

tion.
B.2.3 Local Robustness Settings. Table 11 presents Dataset Network Verified Perturbation Radius (€)
the benchmarks, including neural network and per- Sigm. Tanh L ReLU ELU
; : ; FCN-base 0.0200 0.0100 0.0300 0.0300
turbation radius to verify. Mnisy FON-deep 00300 00250 0.0150 0.0200

CNN-base ~ 0.0100 0.0100 0.0200 0.0300
Received 2025-03-26; accepted 2025-08-12 CNN-wide 0.0650 0.0400 0.0200 0.0300
FCN-base ~ 0.0040 0.0015 0.0040 0.0030

FCN-deep 0.0030 0.0020 0.0025 0.0030
CNN-base 0.0040 0.0015 0.0040 0.0035

CIFARIO oNNwide 00100 00025 0.0040 00035
ResNet-base - 1/255 1/255 1/255
ResNet-deep - 1/255 1/255 1/255

MaxPool

MNIST _ CNN-pool 0.0100

CIFAR10 CNN-pool 0.0010

“-” indicates training failures or inadequate accuracy.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 308. Publication date: October 2025.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Neural Networks with Linear Constraints
	2.2 Convex Polytope and Convex Hull

	3 Our Approach: WraAct
	3.1 Definitions
	3.2 The Main Algorithm
	3.3 Key Components of WraAct

	4 Soundness of WraAct
	4.1 Boundedness of Constructed DLP Functions
	4.2 Soundness of DLP Over-approximation
	4.3 Soundness of Constraint Identification
	4.4 Construction of Single-neuron Constraints

	5 Evaluation
	5.1 Function Hull Over-approximation
	5.2 Local Robustness Verification

	6 Related Work
	6.1 Convex Hull and Its Approximation
	6.2 Approaches of Neural Network Verification

	7 Conclusion
	References
	Appendix
	A Details of WraAct
	A.1 Numerical Results of Running Example
	A.2 Soundness of DLP Over-approximation
	A.3 Single-neuron Constraints of Activation Functions
	A.4 Discussion of Optimality

	B Evaluation
	B.1 Function Hull Approximation
	B.2 Neural Network Verification

