

CORELOCKER: Neuron-level Usage Control

Zihan Wang^{\dagger ,\$}, Zhongkui Ma^{$\dagger$}, Xinguo Feng^{$\dagger$}, Ruoxi Sun^{\$}, Hu Wang[‡], Minhui Xue[§], Guangdong Bai[†]

[†] The University of Queensland § CSIRO's Data61 [‡] The University of Adelaide

The 45th IEEE Symposium on Security and Privacy

Background

High-performing DNNs often demand substantial resources.

 GPT-3 consists of 175 billion parameters and takes 355 GPU-years and \$4.6M for a single training run ^[1].

These DNNs yield significant profits for Model Owners.

 ChatGPT has attracted 100 million active users two months after its launch, and earns \$80 million per month for OpenAI ^[2].

¹Li Chuan. OpenAI's GPT-3 Language Model: A Technical Overview. 2023.

²Chloe Taylor. ChatGPT creator OpenAI earnings: \$80 million a month, \$1 billion annual revenue, \$540 million loss: Sam Altman. 2023 >> 4 🚊 >> 4 🚊 >> 🛓 🔗 🔍

Transfer of the model to an external party is often required.

- machine learning as a service (MLaaS)
- ◊ on-device model deployment

Scenario. Model owners offer models with varying capabilities at different price points.

In such cases, **unethical entities may exploit the obtained model** for unscrupulous competition or unauthorized subletting, posing financial losses.

♦ 41% of mobile apps fail to secure their DNN models ^[3]

³Zhichuang Sun et al. "Mind Your Weight(s): A Large-scale Study on Insufficient Machine Learning Model Protection in Mobile Apps". In: USENIX Searrity. 2021. 🛷 🤇 🤆

Watermarking based ^[4,5,6]. Embed watermarks/signatures in models to verify ownership.

often fail to prevent unauthorized usage after the model's exposure

Parameter encryption/perturbation based [7,8].

- ♦ computationally expensive
- o detectable and removable through out-of-distribution value detection
- ♦ lack of theoretical guarantee

⁴Bita Darvish Rouhani et al. "DeepSigns: An End-to-End Watermarking Framework for Ownership Protection of Deep Neural Networks". In: ASPLOS. 2019.

⁵Shuo Wang et al. "PublicCheck: Public Watermarking Verification for Deep Neural Networks". In: IEEE S&P. 2023.

⁶Huili Chen et al. "Deepattest: an end-to-end attestation framework for deep neural networks". In: ISCA, 2019.

⁷Tong Zhou et al. "NNSplitter: An Active Defense Solution for DNN Model via Automated Weight Obfuscation". In: ICML, 2023.

⁸Mingfu Xue et al. "AdvParams: An Active DNN Intellectual Property Protection Technique via Adversarial Perturbation Based Parameter Encryption". In: IEEE Transactions on Emerging Topics in Computing (2023).

Our method aims for a *training data-agnostic* and *retraining-free* process by **directly operating on off-the-shelf pre-trained networks.**

Specifically, we aim to answer the research question of *how to degrade a model's performance to a lower utility level while ensuring that the full utility can be efficiently restored by authorized controllers?*

CORELOCKER employs the strategic extraction of a small subset of significant weights from the neural network (as the *access key*).

- **Key Customization.** Adjust key volume to customize utility levels.
- Usage Control. Full access for authorized users; limited for unauthorized.

An illustration of the CORELOCKER workflow.

Our Intuition. The performance of a neural network is largely reliant on a crucial subset of weights.

Visualization of filters from the first convolutional layer of a VggNet, sorted by filters' ℓ_1 -norm.

◊ Removing these weights is likely to have the potential to incapacitate the network.

Our Intuition. The performance of a neural network is largely reliant on a crucial subset of weights.

Visualization of feature maps (the top and bottom six) from the first convolutional layer of a VggNet, sorted by filters' ℓ_1 -norm.

◊ Removing these weights is likely to have the potential to incapacitate the network.

Bounded output disparity between pre- and post-extraction networks (f^* and f^{α}).

- Bounded network output by bounding difference of weight matrices layer by layer.
- Quantified how weight extraction alterations in each layer propagate through the network and manifest in the output layer.

Theoretical Implication

CORELOCKER 's strategy offers strong guarantees.

• We establish a direct relationship between weight matrices and neural network output disparity.

Figure: The bounded output variance and disparity post-extraction.

 \diamond The disparity among f^* and f^{lpha} increases rapidly as the extraction ratio increases.

Figure: CORELOCKER (left) versus random extraction (right) on CIFAR-10 (top) and CIFAR-100 (bottom).

CORELOCKER effectively provides model usage control via neuron-level access key extraction and offers fine-grained utility protection through customized keys.

 The model accuracy decrease consistently and rapidly as weight extraction ratios increase. CORELOCKER can offer fine-grained utility protection through customized key volumes.

Extraction	ResNet-164		DenseNet-40	
Ratio	Utility	Range (%)	Utility	Range (%)
0.0005	73.3%	70 – 75	70.2%	70 – 75
0.0010	71.6%	70 – 75	66.3%	65 - 70
0.0015	69.3%	65 - 70	63.5%	60 - 65
0.0020	66.6%	65 - 70	60.0%	60 - 65
0.0025	63.1%	60 - 65	55.9%	55 - 60
0.0030	61.3%	60 - 65	53.7%	50 - 55
0.0035	59.7%	55 - 60	51.5%	50 - 55
0.0040	56.3%	55 - 60	47.4%	45 - 50
0.0045	53.2%	50 - 55	43.6%	40 - 45
0.0050	51.9%	50 - 55	43.1%	40 - 45
0.0055	45.9%	45 - 50	39.3%	35 - 40
0.0060	43.9%	40 - 45	36.7%	35 - 40
0.0065	41.0%	40 - 45	34.1%	30 - 35
0.0070	35.7%	35 - 40	29.3%	25 - 30
0.0075	32.0%	30 - 35	27.2%	25 - 30
0.0080	32.2%	30 - 35	25.2%	25 - 30
0.0085	28.7%	25 - 30	25.0%	20 - 25
0.0090	27.9%	25 - 30	20.8%	20 - 25
0.0095	26.7%	25 - 30	19.5%	15 – 20
0.0100	24.4%	20 - 25	19.5%	15 – 20

▲□▶▲□▶▲□▶▲□▶ = のへで

CORELOCKER captures the fundamental characteristic of *impact concentration* in neural networks.

 Broad Applicability. Tested on various network architectures such as CNNs, RNNs, and Transformers. Table: Granular utility control on Vision Transformer (ViT) trained on CIFAR-100 dataset. Model owners may regulate the model's utility level by adjusting the key extraction volume.

Extraction Ratio	Utility (Accuracy)	Utility Range (%)
0.0000	81.4%	-
0.0050	74.2%	70 - 80
0.0100	65.0%	60 - 70
0.0150	58.1%	50 - 60
0.0200	41.8%	40 - 50

- We establish a crucial research problem of AI model usage control, which requires a neuron-level lock of the model's utility while ensuring that its full utility can be efficiently restored for authorized use with an access key.
- Our work endows the model owner with the capability to tailor the model into a low-utility version, which can be fully restored after authorization.
- Our approach is lightweight, data-agnostic, retraining-free, universally applicable, and grounded with a strong formal foundation.

Thank you

